Purpose: To investigate whether the loss of corticomedullary differentiation (CMD) on T1-weighted MR images due to renal insufficiency can be attributed to changes in T1 values of the cortex, medulla, or both.
Materials And Methods: Study subjects included 10 patients (serum creatinine range 0.6-3.0 mg/dL) referred for suspected renovascular disease who underwent 99mTc-diethylene triamine pentaacetic acid (DTPA) renography to determine single kidney glomerular filtration rate (SKGFR) and same-day MRI, which included T1 measurements and unenhanced T1-weighted gradient echo imaging. Corticomedullary differentiation on T1-weighted images was assessed qualitatively and quantitatively.
Results: SKGFR values ranged from 3.5 to 89.4 mL/minute based on radionuclide studies. T1 relaxation times of the medulla exceeded those of renal cortex by 147.9+/-176.0 msec (mean+/-standard deviation [SD]). Regression analysis showed a negative correlation between cortex T1 and SKGFR (r=-0.5; P=0.03), whereas there was no significant correlation between medullary T1 and SKGFR. The difference between medullary and cortical T1s correlated significantly with SKGFR (r=0.58; P<0.01). In all five kidneys with a corticomedullary contrast-to-noise ratio (CNR)<5.0 on T1-weighted images, SKGFR was less than 20 mL/minute.
Conclusion: In our subject population, loss of CMD with decreasing SKGFR can be attributed primarily to an increased T1 relaxation time of the cortex. Medullary T1 values vary but do not appear to correlate with degree of renal insufficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.20878 | DOI Listing |
Insights Imaging
January 2025
Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
Objectives: This study aimed to investigate the diagnostic value of spectral parameters of dual-layer spectral detector computed tomography (DLCT) in distinguishing between low- and high-grade bladder cancer (BCa).
Methods: This single-center retrospective study included pathologically confirmed BCa patients who underwent preoperative contrast-enhanced DLCT. Patients were divided into low- and high-grade groups based on pathology.
BMC Neurol
December 2024
Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease with a characteristic pathological feature of eosinophilic hyaluronan inclusions in the nervous system and internal organs. The identification of GGC-repeat expansions in the Notch 2 N-terminal like C (NOTCH2NLC) gene facilitates the accurate diagnosis of NIID. Due to its rareness and high clinical heterogeneity, the diagnosis of NIID is often delayed or missed.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
Objectives: To explore the association of the cortico-medullary difference in apparent diffusion coefficient (ΔADC) with clinicopathological parameters of disease activity at the time of biopsy, and with the prognositic risk stratification in IgA nephropathy (IgAN) patients.
Methods: We included 112 patients with biopsy-proven IgAN who measured ΔADC. Patients underwent a kidney biopsy and diffusion-weighted magnetic resonance imaging within one week of the biopsy.
J Am Soc Nephrol
December 2024
Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background: Structure and function in the mammalian kidney are organized along a radial axis highlighted by the corticomedullary organization and regional patterning of the collecting system. The arborised collecting epithelium arises through controlled growth, branching and commitment of Wnt11+ ureteric progenitor cells within cortically localized branch tips until postnatal day 3.
Methods: We applied in situ hybridization and immunofluorescence to key markers of collecting duct cell types to examine their distribution in the embryonic and postnatal mouse kidneys.
Aging Cell
November 2024
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
The intestinal epithelium serves as a physical and functional barrier against harmful substances, preventing their entry into the circulation and subsequent induction of a systemic immune response. Gut barrier dysfunction has recently emerged as a feature of ageing linked to declining health, and increased intestinal membrane permeability has been shown to promote heightened systemic inflammation in aged hosts. Concurrent with age-related changes in the gut microbiome, the thymic microenvironment undergoes a series of morphological, phenotypical and architectural alterations with age, including disorganisation of the corticomedullary junction, increased fibrosis, increased thymic adiposity and the accumulation of senescent cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!