Phospholipid-coatings on metallic implant surfaces were evaluated in terms of adhesion, proliferation and matrix production of skeletal cells, and of macrophage stimulation. The working hypothesis is that mimicking a model biomembrane by phospholipids on surfaces to which cells adhere, the surface recognition by surrounding cells is altered. In this study, 1) mirror-like polished Ti-6Al-7Nb and 2) porous Ti-6Al-4V specimens were covered with the phospholipids POPE (palmitoyl-oleoyl phosphatidyl-ethanolamine) and POPC (palmitoyl-oleoyl phosphatidyl-choline), and the interactions of a) human articular chondrocytes (HAC), b) human mesenchymal stem cells (HMSC), and c) mouse macrophages (RAW 264.7Rpar; were tested in vitro. On POPE-covered polished surfaces adherence of HAC (42% of seeded cells after 2 hrs) and metabolic activity (MTT after 3 days) were reduced, while on porous surfaces 99% HAC adhered, and metabolic activity was significantly increased, compared to respective native surfaces. On both POPE-covered surfaces the chondrocyte phenotype was present. After 3 weeks of chondrogenic differentiation, cartilage matrix production (measuring chondroitin sulphate per HAC number) was significantly increased by about 30% on both POPE-covered metallic surfaces. On both POPC-covered surfaces nearly no adhering and surviving HAC were found. HMSC grown on POPE-covered porous substrates showed osteogenic differentiation by improved osteopontin and collagen I expression in RT-PCR, and osteocalcin fluorescence and bone nodule formation was only detectable on POPE-covered porous surfaces. In contrast to POPC and other phospholipids used as positive controls, POPE did not stimulate the NO production in mouse macrophage cultures. We therefore conclude that a phospholipid coating by POPE shows potential as surface modification for metallic implant materials.

Download full-text PDF

Source
http://dx.doi.org/10.22203/ecm.v013a02DOI Listing

Publication Analysis

Top Keywords

metallic implant
12
surfaces
9
interactions human
8
mesenchymal stem
8
stem cells
8
mouse macrophages
8
implant materials
8
matrix production
8
metabolic activity
8
porous surfaces
8

Similar Publications

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Anaerobic Adhesive Effect on the Counter-Torque of Zirconia Implant Abutment Screws: In Vitro Study.

Clin Implant Dent Relat Res

February 2025

Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Introduction: Implantology has become a primary solution for tooth loss due to excellent osseointegration and high long-term success rates. However, complications such as abutment screw loosening, especially in implant-supported single crowns, compromise prosthesis longevity. Anaerobic adhesives (AAs) have shown promise in mechanical fields for preventing screw loosening, but their effectiveness in dental implants, particularly zirconia, remains uncertain.

View Article and Find Full Text PDF

Background: Femoral condyle insufficiency fractures following total knee arthroplasty (FCIF-TKA) are rare but significant complications. These fractures, characterized by atraumatic bone insufficiency near the femoral component, present unique challenges in postoperative care, often necessitating femoral component revision.

Methods: This study retrospectively reviewed 835 primary total knee arthroplasties performed by a single surgeon, identifying six cases of FCIF-TKA.

View Article and Find Full Text PDF

This case report describes the reconstruction of a rostral maxillary defect by two custom-made titanium implants following a rostral partial maxillectomy for treatment of squamous cell carcinoma (SCC) in a seven-year-old dog. An incisional biopsy and CT scan were performed to establish the diagnosis, to plan possible surgery, and to assess the margins of the tumour. The patient had no radiographic signs of metastasis at the time of diagnosis.

View Article and Find Full Text PDF

Background: Anatomically formed healing abutments were suggested in literature to address many of the issues associated with immediate posterior implant insertion such as large extraction sockets that are extremely hard to seal without reflecting the mucoperiosteal flap, extraction sockets anatomy that are not suitable for regular healing abutment placement, and potentially high occlusal stresses when planning a temporary implant supported prothesis to improve the conditioning of supra implant tissue architecture and the emergence profile of the implant supported restorations.

Purpose: To clinically evaluate the peri-implant soft tissue profile of single posterior implant retained restorations and to assess patient related outcomes of the implant restorations that were conditioned immediately by CAD-CAM socket sealing abutments (SSA) versus those conditioned by Titanium (Ti) standard healing abutments (SHA).

Methods: Twenty participants received twenty-two single maxillary immediate implants after flapless minimally invasive tooth extraction and 3D guided implant placement in the posterior area (premolar and molar) and allocated randomly into two groups (n = 11), the intervention group: patients received PEEK SSA and the control group: the patients received Ti SHA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!