Hydrolytic degradable PBT/PEG copolymer was synthesized by macromolecular transesterification method from PBT and PEG macromonomers. The resultant copolymers were characterized by (1)H-NMR and GPC. The non-isothermal crystallization behavior of these copolymers was studied by differential scanning calorimetry (DSC). The water absorption and hydrolytic degradation behavior of PBT/PEG copolymers were also studied in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-007-2004-2DOI Listing

Publication Analysis

Top Keywords

hydrolytic degradation
8
pbt/peg copolymers
8
copolymers studied
8
synthesis characterization
4
characterization hydrolytic
4
degradation degradable
4
degradable polybutylene
4
polybutylene terephthalate/polyethylene
4
terephthalate/polyethylene glycol
4
glycol pbt/peg
4

Similar Publications

Article Synopsis
  • Carrageenan oligosaccharides show promising biological activities and can be produced using carrageenases from a newly identified marine bacterium, Shewanella sp. LE8.
  • The study characterizes κ-, ι-, and λ-carrageenases produced by this bacterium, revealing that its crude enzyme was effective in degrading specific types of carrageenan under different conditions.
  • Findings from molecular weight distribution and analysis of hydrolysates indicate that the degradation process involves not only enzymatic action but also sulfatase participation, suggesting a potential for industrial applications of the oligosaccharides produced.
View Article and Find Full Text PDF

Rapid and well-controlled degradation of polylactic acid materials with bio-based GEL(pectin/α-cellulose/SiO/CaCl).

Int J Biol Macromol

December 2024

College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:

Polylactic acid (PLA) has been a subject of considerable interest as a degradable polymer. However, the degradation process is slow and uncontrollable. In this work, controlled degradable PLA/bio-based GEL (pectin/α-cellulose/SiO/CaCl) hydrophilic plasticizer composite material was successfully prepared by solution blending process.

View Article and Find Full Text PDF

Piceatannol, a stilbene compound, undergoes a comprehensive phase II metabolism mediated by UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in humans. Despite their well-documented beneficial effects on health, their detailed pharmacokinetic fate, including the metabolite structure and properties, is poorly understood. Thus, we determined the structure of seven glucuronides and six sulfates transformed from piceatannol and its methylated derivatives in recombinant yeast cells expressing UGTs or SULTs.

View Article and Find Full Text PDF

Enhanced antioxidant and antimicrobial activities of chitosan/oxidized microcrystalline cellulose blended films with Tribulus terrestris extract for food packaging applications.

Int J Biol Macromol

December 2024

Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Türkiye.

Chitosan/oxidized cellulose blended film with Tribulus terrestris (T. terrestris) extract films were successfully produced by casting method. The obtained blend films were characterized by structural, mechanical, optical, permeation, antioxidant, and antimicrobial properties.

View Article and Find Full Text PDF

Members of the genus are commonly found in natural aquatic ecosystems. However, they are also frequently present in non-chlorinated drinking water distribution systems. High densities of these bacteria indicate favorable conditions for microbial regrowth, which is considered undesirable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!