The 3' untranslated region of the water buffalo Nramp1 (natural resistance-associated macrophage protein 1) gene contains two alleles (Nramp1A and Nramp1B), as detected by the denaturing gradient gel electrophoresis (DGGE) technique. The Nramp1BB genotype is associated with resistance of water buffalo to the intracellular pathogen Brucella abortus. This article provides evidence that the Nramp1AA genotype is associated with susceptibility to the same pathogen. Susceptibility or resistance of water buffalo to B. abortus was established by agglutination, complement fixation, and skin tests. The Nramp1 genotype was established by DGGE analysis. The association between the Nramp1AA genotype and susceptibility to B. abortus was demonstrated in two independent population samples (152 cases and 281 controls; 87 cases and 124 controls, respectively). Macrophages from Nramp1AA subjects displayed a lower Nramp1 mRNA level when compared with macrophages from Nramp1BB subjects. Also, monocytes and macrophages from Nramp1AA subjects displayed a higher number of viable intracellular bacteria in comparison with monocytes and macrophages from Nramp1BB animals, providing biological significance to the results from association studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-006-0103-xDOI Listing

Publication Analysis

Top Keywords

water buffalo
16
nramp1aa genotype
12
brucella abortus
8
genotype associated
8
resistance water
8
macrophages nramp1aa
8
nramp1aa subjects
8
subjects displayed
8
macrophages nramp1bb
8
monocytes macrophages
8

Similar Publications

Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance.

View Article and Find Full Text PDF

CircTEC Inhibits the Follicular Atresia in Buffalo () via Targeting miR-144-5p/FZD3 Signaling Axis.

Int J Mol Sci

December 2024

Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.

The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified.

View Article and Find Full Text PDF

Enhancing lumpy skin disease control: Effective competitive and indirect ELISAs for serological surveillance.

J Virol Methods

January 2025

Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), via Bianchi 9, Brescia 24125, Italy. Electronic address:

Lumpy skin disease (LSD), caused by the LSD virus (LSDV) from the Capripoxvirus genus, affects cattle, water buffalo, and wild bovines, leading to significant economic losses. Characterised by fever, skin nodules, and mucosal lesions, LSD raises global concerns due to vector-borne transmission. The World Organisation for Animal Health (WOAH) classifies LSD as a notifiable disease, emphasising the need for rapid diagnostic methods for timely disease confirmation and control.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!