The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory interneurons was not caused by their distinctive intrinsic properties but was instead produced by synaptic mechanisms. Axons from the thalamus made stronger and more frequent excitatory connections onto inhibitory interneurons than onto excitatory cells. Furthermore, circuit dynamics allowed feedforward inhibition to suppress responses in excitatory cells more effectively than in interneurons. Thalamocortical excitatory currents rose quickly in interneurons, allowing them to fire action potentials before significant feedforward inhibition emerged. In contrast, thalamocortical excitatory currents rose slowly in excitatory cells, overlapping with feedforward inhibitory currents that suppress action potentials. These results demonstrate the importance of selective synaptic targeting and precise timing in the initial stages of neocortical processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn1861 | DOI Listing |
Biomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso 2340000, Chile; Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. Electronic address:
Ketamine administration during adolescence affects cognitive performance; however, its long-term impact on synaptic function and neuronal integration in the hippocampus a brain region critical for cognition remains unclear. Using functional and molecular analyses, we found that chronic ketamine administration during adolescence exerts long-term effects on synaptic integration, expanding the temporal window in an input-specific manner affecting the inner molecular layer but not the medial perforant path inputs in the adult mouse dorsal hippocampal dentate gyrus. Ketamine also alters the excitatory/inhibitory balance by reducing the efficacy of inhibitory inputs likely due to a reduction in parvalbumin-positive interneurons number and function.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China.
Epilepsy is a network disorder, involving neural circuits at both the micro- and macroscale. While local excitatory-inhibitory imbalances are recognized as a hallmark at the microscale, the dynamic role of distinct neuron types during seizures remain poorly understood. At the macroscale, interactions between key nodes within the epileptic network, such as the central median thalamic nucleus (CMT), are critical to the, hippocampal epileptic process.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America.
Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.
View Article and Find Full Text PDFRev Neurosci
January 2025
Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran.
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!