Neuronal development, plasticity and survival require activity-dependent synapse-to-nucleus signaling. Most studies implicate an activity-dependent regulation of gene expression in this phenomenon. However, little is known about other nuclear functions that are regulated by synaptic activity. Here we show that a newly identified component of rat postsynaptic densities (PSDs), AIDA-1d, can regulate global protein synthesis by altering nucleolar numbers. AIDA-1d binds to the first two postsynaptic density-95/Discs large/zona occludens-1 (PDZ) domains of the scaffolding protein PSD-95 via its C-terminal three amino acids. Stimulation of NMDA receptors (NMDARs), which are also bound to PSD-95, results in a Ca2+-independent translocation of AIDA-1d to the nucleus, where it couples to Cajal bodies and induces Cajal body-nucleolar association. Long-term neuronal stimulation results in an AIDA-1-dependent increase in nucleolar numbers and protein synthesis. We propose that AIDA-1d mediates a link between synaptic activity and control of protein biosynthetic capacity by regulating nucleolar assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1867DOI Listing

Publication Analysis

Top Keywords

nucleolar numbers
12
protein synthesis
12
numbers protein
8
synaptic activity
8
protein
5
activity-dependent aida-1
4
aida-1 nuclear
4
nuclear signaling
4
signaling regulates
4
nucleolar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!