Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nbt1290DOI Listing

Publication Analysis

Top Keywords

genome sequence
8
xylose-fermenting yeast
8
pichia stipitis
8
xylose metabolism
8
stipitis
6
genome
4
sequence lignocellulose-bioconverting
4
lignocellulose-bioconverting xylose-fermenting
4
yeast pichia
4
xylose
4

Similar Publications

Draft Genome of Naganishia uzbekistanensis from a Clinical Pulmonary Infection.

Mycopathologia

January 2025

Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.

This study presents the first high-quality assembled genome of Naganishia uzbekistanensis, derived from a clinical isolate CY11558 obtained from a patient with a postoperative pulmonary infection. This work provides an improved reference assembly for downstream research and diagnosis of infections caused by this species.

View Article and Find Full Text PDF

Sleeve Gastrectomy and Gastric Bypass Impact in Patient's Metabolic, Gut Microbiome, and Immuno-inflammatory Profiles-A Comparative Study.

Obes Surg

January 2025

Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Background: Bariatric surgery is the most long-term effective treatment option for severe obesity. The role of gut microbiome (GM) in either the development of obesity or in response to obesity management strategies has been a matter of debate. This study aims to compare the impact of two of the most popular procedures, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (GB), on metabolic syndrome parameters and gut bacterial microbiome and in systemic immuno-inflammatory response.

View Article and Find Full Text PDF

We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!