Spontaneous mutations in Drosophila melanogaster are related mainly to transposable elements (TEs). They are caused by both migration of TEs over the genome (transpositions) and the ability of TEs to induce chromosomal mutations. Migration of DNA transposons is accompanied by formation of double-strand DNA breaks (DSBs), which are repaired by host repair systems encoded by genes for recombination repair. We relied on this notion to develop a combined approach to the investigation of the type of DNA breaks accompanying transpositions; investigation of systems involved in DSB repair; and detection of repair genes, whose products were involved in repair of DNA breaks induced by TE transposition. The approach is based on the combination of experimental insertional mutagenesis systems and genetic environment deficient for enzymes of the repair system in a single genome. The main advantages of this approach are versatility, wide applicability, and simple design.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna breaks
16
experimental insertional
8
insertional mutagenesis
8
genetic environment
8
drosophila melanogaster
8
repair
7
dna
5
[highly sensitive
4
systems
4
sensitive systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!