A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light and growth temperature alter carbon isotope discrimination and estimated bundle sheath leakiness in C4 grasses and dicots. | LitMetric

We combined measurements of short-term (during gas exchange) and long-term (from plant dry matter) carbon isotope discrimination to estimate CO(2) leakiness from bundle sheath cells in six C(4) species (three grasses and three dicots) as a function of leaf insertion level, growth temperature and short-term irradiance. The two methods for determining leakiness yielded similar results (P > 0.05) for all species except Setaria macrostachya, which may be explained by the leaf of this species not being accommodating to gas exchange. Leaf insertion level had no effect on leakiness. At the highest growth temperature (36 degrees C) leakiness was lower than at the two lower growth temperatures (16 degrees C and 26 degrees C), between which no differences in leakiness were apparent. Higher irradiance decreased leakiness in three species, while it had no significant effect on the others (there was an opposite trend in two species). The inverse response to increasing irradiance was most marked in the two NAD-ME dicots (both Amaranthus species), which both showed almost 50% leakiness at low light (300 micromol quanta m(-2) s(-1)) compared to about 30% at high light (1,600 micromol quanta m(-2) s(-1)). NADP-ME subtype grasses had lower leakiness than NAD-ME dicots. Although there were exceptions, particularly in the effect of irradiance on leakiness in Sorghum and Boerhavia, we conclude that conditions favourable to C(4) photosynthesis (high temperature and high light) lead to a reduction in leakiness.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-007-9136-6DOI Listing

Publication Analysis

Top Keywords

growth temperature
12
leakiness
11
carbon isotope
8
isotope discrimination
8
bundle sheath
8
gas exchange
8
leaf insertion
8
insertion level
8
nad-me dicots
8
micromol quanta
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!