Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of carbon monoxide-releasing molecules (CO-RMs) in recent years helped to shed more light on the diverse range of anti-inflammatory and cytoprotective activities of CO gas. In this study, we examined the effect of a ruthenium-based water-soluble CO carrier (CORM-3) on lipopolysaccharide (LPS)- and interferon-gamma (INF-gamma)-induced inflammatory responses in BV-2 microglial cells and explored the possible mechanisms of action. BV-2 microglial cells were stimulated with either LPS or INF-gamma in the presence of CORM-3 and the inflammatory response evaluated by assessing the effect on nitric oxide production (nitrite levels) and tumor necrosis factor-alpha (TNF-alpha) release. Similar experiments were also performed in the presence of inhibitors of guanylate cyclase (ODQ), NO synthase (L-NAME), heme oxygenase activity (tin protoporphyrin IX) or various mitogen-activated protein kinase (MAPK) inhibitors. CORM-3 significantly attenuated the inflammatory response to LPS and INF-gamma as evidenced by a significant reduction (p < 0.001) in nitrite levels and TNF-alpha production (P < 0.05). Such effect was maintained in the presence of ODQ, L-NAME or tin protoporphyrin without showing any cytotoxicity. The use of an inactive form of CORM-3 that does not contain carbonyl groups (Ru(DMSO)(4)Cl(2) failed to inhibit the increase in inflammatory markers suggesting that liberated CO mediates the observed effects. In addition, inhibition of phosphatidylinositol-3-phosphate kinase (PI3K) and extracellular signal-regulated kinase (ERK) pathways seemed to amplify the anti-inflammatory effect of CORM-3, particularly in cells stimulated with INF-gamma. These results suggest that the anti-inflammatory action of CORM-3 could be exploited to mitigate microglia activation in neuro-inflammatory diseases.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!