Although flow cytometry is useful for studying neural lineage relationships, the method of dissociation can potentially bias cell analysis. We compared dissociation methods on viability and antigen recognition of mouse central nervous system (CNS) tissue and human CNS tumor tissue. Although nonenzymatic dissociation yielded poor viability, papain, purified trypsin replacement (TrypLE), and two purified collagenase/neutral protease cocktails (Liberase-1 or Accutase) each efficiently dissociated fetal tissue and postnatal tissue. Mouse cells dissociated with Liberase-1 were titrated with antibodies identifying distinct CNS precursor subtypes, including CD133, CD15, CD24, A2B5, and PSA-NCAM. Of the enzymes tested, papain most aggressively reduced antigenicity for mouse and human CD24. On human CNS tumor cells, CD133 expression remained highest after Liberase-1 and was lowest after papain or Accutase treatment; Liberase-1 digestion allowed magnetic sorting for CD133 without the need for an antigen re-expression recovery period. We conclude that Liberase-1 and TrypLE provide the best balance of dissociation efficiency, viability, and antigen retention. One implication of this comparison was confirmed by dissociating E13.5 mouse cortical cells and performing prospective isolation and clonal analysis on the basis of CD133/CD24 or CD15/CD24 expression. Highest fetal expression of CD133 or CD15 occurred in a CD24(hi) population that was enriched in neuronal progenitors. Multipotent cells expressed CD133 and CD15 at lower levels than did these neuronal progenitors. We conclude that CD133 and CD15 can be used similarly as selectable markers, but CD24 coexpression helps to distinguish fetal mouse multipotent stem cells from neuronal progenitors and postmitotic neurons. This particular discrimination is not possible after papain treatment. Disclosure of potential conflicts of interest is found at the end of this article.

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.2006-0260DOI Listing

Publication Analysis

Top Keywords

cd133 cd15
20
neuronal progenitors
12
central nervous
8
nervous system
8
cd15 cd24
8
viability antigen
8
human cns
8
cns tumor
8
cd133
7
cells
6

Similar Publications

Article Synopsis
  • Thyroid cancer stem cells (TCSCs) are important in understanding thyroid cancer's progression and treatment, highlighting their potential as biomarkers and therapeutic targets.
  • A systematic review analyzed five articles and identified six TCSC markers (CD133, CD44, CD24, CD15, and ALDH1) linked to thyroid cancer prognosis.
  • More research is needed to confirm the clinical effectiveness of these markers for predicting patient outcomes in thyroid cancer.
View Article and Find Full Text PDF

Renal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, = 3), relatively healthy donor kidneys ( = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, = 3).

View Article and Find Full Text PDF

Quantitative Evaluation of Stem-like Markers of Human Glioblastoma Using Single-Cell RNA Sequencing Datasets.

Cancers (Basel)

March 2023

Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.

Targeting glioblastoma (GBM) stem-like cells (GSCs) is a common interest in both the laboratory investigation and clinical treatment of GBM. Most of the currently applied GBM stem-like markers lack validation and comparison with common standards regarding their efficiency and feasibility in various targeting methods. Using single-cell RNA sequencing datasets from 37 GBM patients, we obtained a large pool of 2173 GBM stem-like marker candidates.

View Article and Find Full Text PDF

The neural crest gives rise to progeny as diverse as peripheral neurons, myelinating cells, cranial muscle, bone and cartilage tissues, and melanocytes. Neural crest derivation encompasses complex morphological change, including epithelial-to-mesenchymal transition (EMT) and migration to the eventual target locations throughout the body. Neural crest cultures derived from stem cells provide an attractive source for developmental studies in human model systems, of immediate biomedical relevance for neurocristopathies, neural cancer biology and regenerative medicine, if only appropriate markers for lineage and cell type definition and quality control criteria were available.

View Article and Find Full Text PDF

Children with high-risk SHH/-mut and Group 3 medulloblastoma (MB) have a 5-year overall survival of only 40%. Innovative approaches to enhance survival while preventing adverse effects are urgently needed. We investigated an innovative therapy approach combining irradiation (RT), decitabine (DEC), and abacavir (ABC) in a patient-derived orthotopic SHH/-mut and Group 3 MB mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!