Molecular therapeutics identifies an aberration in tumors to select patients that benefit from molecular targeted therapy. Overexpression of eIF4E in histologically "tumor-free" surgical margins of head and neck squamous cell cancer (HNSCC) patients is an independent predictor of recurrence and is functionally activated through the Akt/mammalian target of rapamycin (mTOR) pathway. Although mTOR inhibitors are cytostatic agents, best used in combination therapy, we hypothesize that they can be used as long-term single agents in an HNSCC model of minimal residual disease (MRD). CCI-779, an mTOR inhibitor, arrested growth of a phosphatase and tensin homologue deleted on chromosome 10 (PTEN) abnormal HNSCC cell line FaDu, inhibiting phosphorylation of 4E-binding protein 1, resulting in increased association with eIF4E and inhibition of basic fibroblast growth factor and vascular endothelial growth factor. Fluorescence in situ hybridization detected PTEN abnormalities in 68% of patient tumors and 35% of tumor-free margins. CCI-779 inhibited growth of established tumors in nude mice. However, in the MRD model, there were significant differences in the tumor-free rate between the control (4%) and the treatment group (50%), and the median tumor-free time was 7 versus 18 days, respectively (P < 0.0001). In those animals that formed tumors, CCI-779 caused a significant decrease in the tumor volume. The Kaplan-Meier curve showed that CCI-779 significantly increased survival (P < 0.0001). The mTOR pathway was inhibited in peripheral blood mononuclear cells potential surrogate markers of response to therapy. Stable transfection of FaDu with luciferase allowed us to monitor the effects of CCI-779 with bioluminescence imaging in the MRD model. These results pave the way for a clinical trial using targeted molecular therapy with CCI-779 as a single agent for mTOR-activated residual cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-06-2449 | DOI Listing |
Alzheimers Dement
December 2024
Institut de l'Audition/Institut Pasteur, Paris, France.
Background: Memory consolidation is an essential process for our everyday lives that is severely disrupted in Alzheimer's Disease (AD). Memories are initially encoded in the hippocampus before being consolidated in the neocortex by synaptic plasticity processes that depend on protein synthesis. However, how molecular pathways affect synaptic signalling during memory consolidation in health and disease is unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
McGill University, Montreal, QC, Canada.
Background: Activation of the mTOR pathway is pivotal for microglia to induce and sustain neuroprotective functions (Ulland et al., 2017; Wang et al., 2022).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Washington School of Medicine, Seattle, WA, USA.
Background: A drug cocktail targeting different processes of aging was tested in an aging mouse model of Alzheimer's disease (AD) neuropathologic change as an intervention to improve behaviors corresponding to cognitive dysfunction in AD.
Method: A cocktail of acarbose/rapamycin/phenylbutyrate or a control treatment was administered (medicated vs. non-medicated chow) chronically to 22 months-old mice that received viral vector injections to induce amyloid and tau pathology in the hippocampus at 24 months of age.
Alzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Background: Previous studies have found that mechanistic target of rapamycin complex 1 (mTORC1) activity is significantly increased in Alzheimer's disease (AD) patients and mouse models of AD. Additionally, inhibition of mTORC1 with systemic rapamycin treatment ameliorates AD-like phenotypes in several AD mouse models. However, the specific contribution of neuronal mTORC1 signaling in driving AD phenotypes has not yet been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!