To clarify the mechanism of platelet production from megakaryocytes, expression of target proteins by gene transfection was examined using various gene delivery techniques. Transfection into hematopoietic cells, including megakaryocytes, by conventional gene delivery techniques such as electroporation and lipofection are known to be difficult. In this study, in addition to electroporation and lipofection, we tested other gene-transfer methods (nucleofection, transfection using inactivated virus envelope, and transferrin-linked cationic polymer) with the green fluorescent protein (GFP) gene into the human megakaryocytic cell line MEG-01. We found that nucleofection, which uses a combination of special electrical parameters and specific solutions, was the best, judging from the expression ratio of GFP-positive cells (approximately 70% of cells) and low toxicity. The efficiency of GFP expression was not related to the amount of pDNA delivered into the MEG-01 cells. To verify the utility of nucleofection, the thrombopoietin (TPO) receptor c-mpl was transfected into MEG-01 cells. Transfected cells showed a higher responsiveness to TPO than mock-transfected MEG-01 cells. We propose that nucleofection is a useful method for transfecting target genes to megakaryocytic cells when addressing the mechanism of platelet production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2007.01.042 | DOI Listing |
Biomolecules
October 2024
College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea.
Platelets are essential blood components that maintain hemostasis, prevent excessive bleeding, and facilitate wound healing. Reduced platelet counts are implicated in various diseases, including leukemia, hepatitis, cancer, and Alzheimer's disease. Enhancing megakaryocytic differentiation is a promising strategy to increase platelet production.
View Article and Find Full Text PDFThromb Res
December 2024
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada. Electronic address:
Background: Platelet-rich microvascular thrombi are common in severe COVID-19. Endogenous nitric oxide (NO)-signaling limits thrombus formation and previously we identified platelet subpopulations with a differential ability to produce NO based on the presence or absence of endothelial nitric oxide synthase (eNOS). eNOS expression is counter-regulated by cytokines, and COVID-19-associated immune/inflammatory responses may affect the transcriptome profile of megakaryocytes and their platelet progeny.
View Article and Find Full Text PDFJ Mol Cell Biol
October 2024
Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR9017, Institut Pasteur de Lille, Lille 59019, France.
Despite an undetectable plasma viral load as a result of antiretroviral therapy, HIV-1-infected individuals with poor immune reconstitution harbor infectious HIV-1 within their platelets. Megakaryocytes, as platelet precursors, are the likely cellular origin of these HIV-1-containing platelets. To investigate the mechanisms that allow megakaryocytes to support HIV-1 infection, we established in vitro models of viral infection using hematopoietic stem cell-derived megakaryocytes and the megakaryocytic MEG-01 cell line.
View Article and Find Full Text PDFHeliyon
August 2024
Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Background: Type 2 diabetes mellitus (T2DM) presents a thrombotic environment, contributing to diabetic macroangiopathy and microangiopathy. In this study, the regulation of microthrombosis in T2DM was assessed.
Methods: Platelets from T2DM patients and healthy controls were analyzed using 4D label-free proteomics and bioinformatics.
Br J Haematol
December 2024
Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
The CYCS gene is highly evolutionarily conserved, with only a few pathogenic variants that cause thrombocytopenia-4 (THC4). Here, we report a novel CYCS variant NM_018947.6: c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!