Genomics and proteomics approaches in understanding tumor angiogenesis.

Expert Rev Mol Diagn

Cold Spring Harbor Laboratory, Cancer Genome Research Center, NY, USA.

Published: March 2007

Functional genomic and proteomic approaches have begun to revolutionize cancer research. The advent of powerful technologies, such as DNA microarrays, serial analysis of gene expression, RNA interference and proteomics, has accelerated investigations of gene identification and function at a scale never before accomplished. Approaches integrating these technologies with high-throughput forward and reverse genetic screens, are already providing insights into the mechanistic understanding of angiogenesis, leading to the identification of proteins that can be used for selective targeting of tumor vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1586/14737159.7.2.133DOI Listing

Publication Analysis

Top Keywords

genomics proteomics
4
proteomics approaches
4
approaches understanding
4
understanding tumor
4
tumor angiogenesis
4
angiogenesis functional
4
functional genomic
4
genomic proteomic
4
proteomic approaches
4
approaches begun
4

Similar Publications

Multi-Omics Research on Angina Pectoris: A Novel Perspective.

Aging Dis

December 2024

Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP).

View Article and Find Full Text PDF

Background: The Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) is a public-private partnership linking NIH, the FDA, pharmaceutical companies, and nonprofit organizations in an interactive, collaborative program utilizing transcriptomics, genomics, metagenomics, proteomics, and metabolomics to provide data for computational analysis, that, in turn, enables promising targets to be ranked by a combination of omic scores and druggability. This ranking informs the selection of targets for validation.

Method: Human postmortem samples were obtained from Mount Sinai, ROSMAP (Religious Orders Study and Rush Memory and Aging Project), Mayo Clinic (Florida), and Columbia University.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: While compelling evidence highlights the importance of myeloid cells in the etiology of Alzheimer's Disease (AD), the relevance of immunometabolism still requires further exploration. Our analysis integrating AD genetics and myeloid cell genomics shows that lower levels of LACTB expression in myeloid cells is protective against AD, a finding supported by proteomics studies. As a mitochondrial active-site serine protein, LACTB has implications for mitochondrial morphology and bioenergetics.

View Article and Find Full Text PDF

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an inflammatory response arising from lung and systemic injury with diverse causes and associated with high rates of morbidity and mortality. To date, no fully effective pharmacological therapies have been established and the relevant underlying mechanisms warrant elucidation, which may be facilitated by multi‑omics technology. The present review summarizes the application of multi‑omics technology in identifying novel diagnostic markers and therapeutic strategies of ALI/ARDS as well as its pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!