[Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

Ying Yong Sheng Tai Xue Bao

College of Water Resources and Architecture Engineering, Northwest Sci-Tech University for Agriculture and Forestry, Yangling 712100, Shaanxi, China.

Published: December 2006

With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rainfall intensity
32
rainfall infiltration
20
wetting front
20
infiltration redistribution
16
soil water
16
larger rainfall
16
rainfall
14
redistribution soil
12
intensity
8
infiltration
8

Similar Publications

Terrestrial bird populations on small, species depauperate islands often experience selection for generalist foraging traits via ecological release; however, it is unclear how island conditions may uniquely influence other life-history characteristics of small-island birds, such as the unusually high rates of molt-breeding overlap exhibited on the island of Grenada. To explore this question, we collected data on the life cycles and diets of 10 commonly occurring Grenadian bird species to assess the degree of generalist foraging and evaluate how seasonal patterns in diet niche breadth and diet overlap among species relates to the high rates of molt-breeding overlap. We evaluated three hypotheses explaining drivers of molt-breeding overlap (constraints on molt rate, unpredictable food abundance, and limited duration of food abundance), and suggest that widespread overlap in small-island tropical communities may be the result of generalist foraging adaptations and restricted time periods of sufficient invertebrate availability for successful breeding and molt to occur.

View Article and Find Full Text PDF

Maintaining yield goals while reducing nitrate-nitrogen (NO-N) leaching to groundwater is a challenge for potato (Solanum tuberosum) production in the Wisconsin Central Sands as well as across the United States. The objectives of this study were to quantify the effect of conventional and enhanced efficiency nitrogen (N) fertilizers on NO-N leaching, crop yield, and N uptake in potatoes. We compared five N treatments, which include a 0 N control and 280 kg ha as ammonium sulfate and ammonium nitrate (AS/AN), polymer-coated urea (PCU), urea with a urease inhibitor (Urea+UI), or urea with a UI and a nitrification inhibitor (Urea+UI+NI).

View Article and Find Full Text PDF

Impacts of climate change on storm event-based flow regime and channel stability of urban headwater streams.

J Environ Manage

January 2025

Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:

Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.

View Article and Find Full Text PDF

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Introduction: The increase in vapor pressure deficit (VPD) is among the expected change in futur climate, and understanding its effect on crop growth is of much significance for breeeding programs. Three groups (G1,G2 and G3) of pearl millet germplasm, originating from regions with different rainfall intensities, were grown in the field during period of high and low VPDs. The groups G1,G2 and G3 were respectively from Guinean (rainfall above 1000 mm), Soudanian (rainfall between 600 mm and 900 mm), and Sahelian zones (rainfall between 600 and 300 mm) of Africa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!