Myostatin is a negative regulator of muscle mass whose inhibition has been proposed as a therapeutic strategy for muscle-wasting conditions. Indeed, blocking myostatin action through different strategies has proved beneficial for the pathophysiology of the dystrophin-deficient mdx mouse. In this report, we tested the inhibition of myostatin by AAV-mediated expression of a mutated propeptide in animal models of two limb-girdle muscular dystrophies: LGMD2A caused by mutations in the calpain 3 (CAPN3) gene and LGMD2D caused by mutations in the alpha-sarcoglycan gene (SGCA). In the highly regenerative Sgca-null mice, survival of the alpha-sarcoglycan-deficient muscle fibers did not improve after transfer of the myostatin propeptide. In calpain 3-deficient mice, a boost in muscle mass and an increase in absolute force were obtained, suggesting that myostatin inhibition could constitute a therapeutic strategy in this predominantly atrophic disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3302928DOI Listing

Publication Analysis

Top Keywords

myostatin propeptide
8
muscle mass
8
therapeutic strategy
8
caused mutations
8
myostatin
6
aav-mediated delivery
4
delivery mutated
4
mutated myostatin
4
propeptide ameliorates
4
ameliorates calpain
4

Similar Publications

Background: Heart failure (HF) is a condition characterized by the heart's inability to meet the body's demands, resulting in various complications. Two primary types of HF exist, namely HF with preserved left ventricular ejection fraction (LVEF) and HF reduced with LVEF. The progression of HF involves compensatory mechanisms such as cardiac hypertrophy, fibrosis, and alterations in gene expression.

View Article and Find Full Text PDF

Objective: To observe the effects of thunder-fire moxibustion on the balance function and musculoskeletal metabolism in female patients of primary osteoporosis (POP) with low muscle mass.

Methods: Sixty female patients of POP with low muscle mass were randomly divided into an observation group (30 cases, 5 cases dropped out) and a control group (30 cases, 2 cases dropped out). The patients in the control group were treated with oral administration of Caltrate D (1.

View Article and Find Full Text PDF

The role of bone and muscle as endocrine organs may be important contributing factors for children's growth and development. Myokines, secreted by muscle cells, play a role in regulating bone metabolism, either directly or indirectly. Conversely, markers of bone metabolism, reflecting the balance between bone formation and bone resorption, can also influence myokine secretion.

View Article and Find Full Text PDF

Myostatin (mstn), also known as GDF8, is a growth and differentiation factor of the transforming growth factor-β (TGF-β) superfamily and plays a key inhibitory effect in the regulation of skeletal muscle development and growth in vertebrates. In the present study, to comprehend the role of the mstn2 gene of the yellowfin seabream (), the genomic sequence of is 2359 bp, which encodes 360 amino acids and is composed of three exons and two introns, was obtained. Two typical regions, a TGF-β propeptide and TGF-β domain, constitute The topology indicated that was grouped together with other Perciformes, such as the gilthead seabream .

View Article and Find Full Text PDF

Background: Sarcopenia is an age-related skeletal muscle disorder characterized by loss of muscle mass and strength leading to mobility disability. 20-Hydroxyecdysone (20E) is a polyhydroxylated plant steroid that demonstrates pharmacological effects in many disease animal models including ageing/sarcopenia. BIO101 is a 20E purified investigational drug (≥97%) that previously demonstrated good toxicology profiles in rat and dog.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!