Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To prospectively evaluate the ability of macromolecular contrast medium (MMCM)-enhanced dynamic magnetic resonance (MR) imaging to depict vascular changes in response to cyclooxygenase-2 (COX-2) inhibition of angiogenesis in a human breast cancer model.
Materials And Methods: The institutional committee for animal research approved this study. A human breast cancer cell line, MDA-MB-231, was implanted in 30 female homozygotous athymic rats that were alternately assigned to either a drug treatment group that received celecoxib on a daily basis for 7 days or a control group that received saline. Each animal underwent MR imaging after intravenous administration of a high-molecular-weight contrast agent at baseline and again 24 hours and 7 days after administration. Eleven rats in each group successfully underwent all three studies and had data sets of sufficient technical quality. A bidirectional two-compartment tissue model was used to estimate transendothelial permeability (K(PS)) and fractional plasma volume (fPV) for each tumor. Microvessel density was also measured to enable histologic assessment of angiogenesis. Repeated-measures analysis of variance and unpaired two-tailed t tests were used to evaluate differences in mean values between MR examinations performed in the same rats and between baseline values in treated and control rats, respectively.
Results: MR imaging-assayed microvascular K(PS) decreased significantly after 7 days of treatment with celecoxib (P < .05), but it was not significantly changed after 7 days in the control group. Likewise, microvascular density, a histologic surrogate of angiogenesis, was significantly (P < .05) lower in the treatment group than in the control group. The fPV did not significantly change in either group.
Conclusion: Dynamic MR imaging revealed microvascular permeability to a high-molecular-weight contrast agent was significantly reduced by treatment with celecoxib.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2431050658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!