Objective: Individuals with schizophrenia show severe deficits in their ability to decode emotions based upon vocal inflection (affective prosody). This study examined neural substrates of prosodic dysfunction in schizophrenia with voxelwise analysis of diffusion tensor magnetic resonance imaging (MRI).
Method: Affective prosodic performance was assessed in 19 patients with schizophrenia and 19 comparison subjects with the Voice Emotion Identification Task (VOICEID), along with measures of basic pitch perception and executive processing (Wisconsin Card Sorting Test). Diffusion tensor MRI fractional anisotropy valves were used for voxelwise correlation analyses. In a follow-up experiment, performance on a nonaffective prosodic perception task was assessed in an additional cohort of 24 patients and 17 comparison subjects.
Results: Patients showed significant deficits in VOICEID and Distorted Tunes Task performance. Impaired VOICEID performance correlated significantly with lower fractional anisotropy values within primary and secondary auditory pathways, orbitofrontal cortex, corpus callosum, and peri-amygdala white matter. Impaired Distorted Tunes Task performance also correlated with lower fractional anisotropy in auditory and amygdalar pathways but not prefrontal cortex. Wisconsin Card Sorting Test performance in schizophrenia correlated primarily with prefrontal fractional anisotropy. In the follow-up study, significant deficits were observed as well in nonaffective prosodic performance, along with significant intercorrelations among sensory, affective prosodic, and nonaffective measures.
Conclusions: Schizophrenia is associated with both structural and functional disturbances at the level of primary auditory cortex. Such deficits contribute significantly to patients' inability to decode both emotional and semantic aspects of speech, highlighting the importance of sensorial abnormalities in social communicatory dysfunction in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1176/ajp.2007.164.3.474 | DOI Listing |
AJNR Am J Neuroradiol
January 2025
Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic.
Background And Purpose: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization.
Materials And Methods: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the status and histologic grade of adult-type diffuse gliomas.
Front Neurol
December 2024
Department of Neurosurgery, China-Japan Union Hospital of Jilin University and The Third Bethune Hospital of Jilin University, Changchun, China.
Objectives: To investigate the effect of diffusivity metrics of magnetic resonance diffusion tensor imaging (MR-DTI) in the assessment of treatment effects.
Methods: MR-DTI examination for trigeminal neuralgia (TN) patients and the diffusivity metrics of the trigeminal ganglion (TG) were analyzed. Before and after the percutaneous stereotactic radiofrequency rhizotomy (PSR) operation, the treatment effect was assessed using pain scores and MR-DTI.
Brain Sci
November 2024
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
Action video games foster competitive environments that demand rapid spatial navigation and decision-making. Action video gamers often exhibit faster response times and slightly improved accuracy in vision-based sensorimotor tasks. However, the underlying functional and structural changes in the two visual streams of the brain that may be contributing to these cognitive improvements have been unclear.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Phenotypic and genetic relationships between white matter microstructure (i.e., fractional anisotropy [FA]) and peripheral inflammatory responses (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!