We investigated the role of kainate receptors in the generation of theta oscillations using (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)pyrimidine-2,4-dione (UBP304), a novel, potent and highly selective antagonist of GLU(K5)-containing kainate receptors. EEG and single-unit recordings were made from the dorsal hippocampus of awake, freely moving rats trained to forage for food. Bilateral intracerebroventricular injections of UBP304 (2.0 microl, two times; 2.08 mM) caused a clear (approximately 25%) reduction in theta frequency that was dissociable from behavioral effects of the drug. The locations of firing fields of principal cells in the hippocampal formation were generally preserved, but both field firing rates and the precision of field organization decreased. UBP304 lowered the frequency of the theta modulation of hippocampal interneuron discharge, accurately matching the reduced frequency of the theta field oscillation. UBP308 [(R)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)pyrimidine-2,4-dione], the inactive enantiomer of UBP304, caused none of these effects. Our results suggest that GLU(K5) receptors have an important role in modulating theta activity. In addition, the effects on cellular responses provide both insight into the mechanisms of theta pacing, and useful information for models of temporal coding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673475PMC
http://dx.doi.org/10.1523/JNEUROSCI.3954-06.2007DOI Listing

Publication Analysis

Top Keywords

kainate receptors
12
theta oscillations
8
frequency theta
8
theta
7
inhibition kainate
4
receptors
4
receptors reduces
4
frequency
4
reduces frequency
4
frequency hippocampal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!