Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log(10) increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1900241 | PMC |
http://dx.doi.org/10.1128/JVI.00055-07 | DOI Listing |
Vaccines (Basel)
December 2024
Laboratorio de Vacunas Veterinarias, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile.
Immunization against Gonadotropin-Releasing Hormone (GnRH) has been successfully explored and developed for the parenteral inoculation of animals, aimed at controlling fertility, reducing male aggressiveness, and preventing boar taint. Although effective, these vaccines may cause adverse reactions at the injection site, including immunosuppression and inflammation, as well as the involvement of laborious and time-consuming procedures. Oral vaccines represent an advancement in antigen delivery technology in the vaccine industry.
View Article and Find Full Text PDFMalar J
December 2024
Malaria Research and Training Center, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
Background: Malaria remains a significant public health concern, despite global efforts to combat the disease with highest burden in Africa. Reports of emerging artemisinin partial- resistance in East Africa emphasize the importance of molecular data to guide policy decisions. Hence the need for researchers to collaborate with National control programmes to conduct genomics surveillance of malaria to inform malaria control and elimination policies.
View Article and Find Full Text PDFInt J Pharm
November 2024
Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia. Electronic address:
Lipid nanoparticles (LNPs) have emerged as promising carriers to efficiently transport mRNA into cells for protein translation, as seen with the mRNA vaccines used against COVID-19. However, they contain a widely used polymer - poly(ethylene glycol) (PEG) - which lacks the functionality to be easily modified (which could effectively control the physicochemical properties of the LNPs such as its charge), and is also known to be immunogenic. Thus, it is desirable to explore alternative polymers which can replace the PEG component in mRNA LNP vaccines and therapeutics, while still maintaining their efficacy.
View Article and Find Full Text PDFInt J Pharm
November 2024
Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil. Electronic address:
Advances in gene therapy, exemplified by mRNA vaccines against COVID-19, highlight the importance of lipid nanoparticles (LNPs) for nucleic acid delivery despite challenging storage conditions. Substituting mRNA with pDNA in LNPs may enhance stability and efficacy, yet maintaining LNP stability poses challenges, particularly during freeze-drying. Cryoprotectants offer potential to mitigate destabilization, improving LNP properties and in vivo performance.
View Article and Find Full Text PDFACS Synth Biol
October 2024
Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
HeLa cell transfection with plasmid DNA (pDNA) is widely used to materialize biologicals and as a preclinical test of nucleic acid-based vaccine efficacy. We sought to genetically encode mammalian transfection sensor (Trensor) circuits and test their utility in HeLa cells for detecting molecules and methods for their propensity to influence transfection. We intended these Trensor circuits to be triggered if their host cell was treated with polyplexed pDNA or certain small-molecule modulators of transfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!