Tire debris (TD) and its organic components were identified as a main source of PM10 atmospheric and water pollution. Because few data are available on the embryotoxic effects of TD organic components, the lethal and teratogenic potential of tire debris organic extract (TDOE) was evaluated using the frog embryo teratogenesis assay-Xenopus (FETAX), coupled with a histopathological screening of the survived larvae. From stage 8 to stage 47, Xenopus laevis embryos were exposed to TDOE at concentrations of 50, 80, 100, 120 and 140 mg/L. The results showed 50 mg/L TDOE to be the non-observable effect concentration (NOEC). TDOE mortality at 80 mg/L was significantly higher than the control, but did not increase further with higher concentrations. A good concentration-response was observed for percentages of malformed larva and from 80 mg/L on these percentages were significantly higher than the control. Therefore, probit analysis gave a 144.6 mg/L TC50. At 120 and 140 mg/L, many larvae were plurimalformed. The most frequent alterations observed were abnormal gut coiling, microphthalmia, monolateral anophthalmia, and narrowing eyes. The histological screening mainly revealed ocular malformations such as double retina, retina nervous cell layer coiling, and altered lens. Moreover severe vacuolisation and necrosis were scored in liver and axial musculature. These results strongly support the assumption that TDOE is a powerful teratogen for X. laevis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2007.01.007DOI Listing

Publication Analysis

Top Keywords

tire debris
12
debris organic
12
organic extract
8
organic components
8
120 140
8
140 mg/l
8
higher control
8
mg/l
6
tdoe
5
organic
4

Similar Publications

Gradient columns to measure the density of microplastics.

Sci Total Environ

November 2024

School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK. Electronic address:

Density gradient columns are an established industrial method for measuring the density of plastics, but have rarely been applied to environmental plastics. In this study 14 density gradient columns were used to measure the density of 150 environmental plastics particles from an urban beach, plus 100 microplastics of known identity, representing what is believed to be the most extensive density dataset for environmental plastic debris available in scientific literature. In total, 92 % of investigated particles had their density measured, with the remainder falling outside of the range of the density columns: 800-1418 kg·m.

View Article and Find Full Text PDF

Understanding and addressing microplastic pollution: Impacts, mitigation, and future perspectives.

J Contam Hydrol

September 2024

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy. Electronic address:

Improper disposal of household and industrial waste into water bodies has transformed them into de facto dumping grounds. Plastic debris, weathered on beaches degrades into micro-particles and releases chemical additives that enter the water. Microplastic contamination is documented globally in both marine and freshwater environments, posing a significant threat to aquatic ecosystems.

View Article and Find Full Text PDF

Marine debris, particularly microdebris (< 1 mm) poses a potential threat to marine life, including reef-building corals. While previous research has mainly focused on the impact of single polymer microplastics, the effects of natural microdebris, composed of a mixture of materials, have not been explored. Therefore, this study aimed to assess the effects of different microdebris, originating from major sources of pollution, on reef-building corals.

View Article and Find Full Text PDF

Tidal flooding is increasingly common in low-lying coastal regions as sea levels rise. This type of flooding can occur on sunny days with no rainfall and may transport street-associated debris, such as microplastics (MPs) including tire wear particles (TWPs), to coastal systems. This research aimed to quantify MP abundance in tidal floodwater and investigate their fate.

View Article and Find Full Text PDF

Occurrence and dynamics of microplastics and emerging concern microparticles in coastal sediments: Impact of stormwater upgrade and port-associated facilities.

Sci Total Environ

November 2023

IIMyC, Estresores Múltiples en el Ambiente (EMA), FCEyN, UNMDP, CONICET, Funes 3350 (B7602AYL), Mar del Plata, Buenos Aires, Argentina; Red de Investigación de los Estresores Marino Costeros de Latinoamérica y el Caribe-REMARCO, Mar del Plata 7600, Argentina; Departamento de Química y Bioquímica, FCEyN, UNMDP, Funes 3350 (B7602AYL), Mar del Plata 7600, Buenos Aires, Argentina.

Urban runoff is a significant source of microplastic pollution in aquatic environments, especially in coastal areas. Despite urban stormwater runoff being considered a major pathway of anthropogenic particles there's no studies about the impact of stormwater upgrades on microparticle transport. Moreover, due to the influence of anthropogenic activities, including maritime traffic and maintenance, on coastal environments, it is crucial to identify plastic debris from both inland and in-shore sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!