The in-vivo activity of imipenem against VIM-1-producing Klebsiella pneumoniae (VPKP) was assessed in a thigh infection model in neutropenic mice. Animals were infected with three VPKP isolates (imipenem MICs 2, 4 and 32 mg/L, respectively) and a susceptible clinical isolate (MIC 0.125 mg/L) that did not produce any beta-lactamase with broad-spectrum activity. Bacterial density at the site of infection was determined after imipenem treatment (30 and 60 mg/kg every 2 h for 24 h). The log(10) reduction in CFU/thigh was greatest for the wild-type isolate, intermediate for the two imipenem-susceptible VPKP isolates, and lowest for the imipenem-resistant VPKP isolate. Whilst in-vivo imipenem activity appeared reduced against in-vitro susceptible VIM-1 producers compared with a VIM-1-negative control, an increased drug dosage could moderate this reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-0691.2006.01590.xDOI Listing

Publication Analysis

Top Keywords

activity imipenem
8
klebsiella pneumoniae
8
thigh infection
8
infection model
8
vpkp isolates
8
activity
4
imipenem vim-1
4
vim-1 metallo-beta-lactamase-producing
4
metallo-beta-lactamase-producing klebsiella
4
pneumoniae murine
4

Similar Publications

Objectives: In Pseudomonas aeruginosa isolates, emerging meropenem resistance beyond imipenem resistance has become a problem. In this study, we aimed to investigate the relationship between the in vivo acquisition of antimicrobial resistance in fluoroquinolone- and carbapenem-resistant P. aeruginosa clinical isolates, the underlying molecular mechanisms, and exposure to antimicrobial agents.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen belonging to the γ-proteobacteria family, known to cause pneumonia linked with ventilator use and nosocomial infections. With the increasing prevalence of antibiotic-resistant bacteria, there is a pressing need to identify alternatives to conventional antibiotics. Plant-derived substances (PDSs) offer potential not only as antibacterial agents but also as modulators of antibiotic resistance.

View Article and Find Full Text PDF

Objectives: To evaluate the in vitro susceptibility of recent Gram-negative pathogens collected from pediatric patients to imipenem/relebactam (IMI/REL) and comparator agents.

Methods: From 2018 to 2022, 254 hospitals in 62 countries collected Enterobacterales or P. aeruginosa isolates from patients <18 years old as part of the SMART global surveillance program.

View Article and Find Full Text PDF

Mayan Medicinal Plants and Demonstrate Anti-Infective Properties Against the Priority Antibiotic-Resistant Bacteria and .

Plants (Basel)

December 2024

Unidad Médica de Alta Especialidad, Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico.

(1) Background: Carbapenem-resistant (CBRAB) and (CBRPA) are critical and high-priority pathogens that require new therapeutic developments. Medicinal plants are valuable pharmaceutical resources. This study explored the anti-infective properties of Mayan plants, , and .

View Article and Find Full Text PDF

Metallo-β-lactamases (MBLs) in and other Gram-negative organisms pose significant public health threats due to their association with multidrug resistance (MDR). Although aztreonam (AZT) can target MBL-producing organisms, its efficacy is compromised in organisms expressing additional β-lactamases that inactivate it. Combining AZT with the β-lactamase inhibitor avibactam (AVI) may restore its activity against MBL-producing isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!