The stability of internally cross-linked casein micelles against disruption by urea (which disrupts hydrogen bonds and hydrophobic interactions) and trisodium citrate (which sequesters micellar calcium phosphate) was investigated. Addition of urea (0-6 mol L-1) and/or citrate (0-50 mmol L-1) progressively reduced the turbidity of a suspension of casein micelles cross-linked by transglutaminase and increased particle size (determined by dynamic and static light scattering and small-angle neutron scattering), which was attributed to swelling of the micelles. Furthermore, model calculations, assuming a completely stable casein network, were performed to describe the decreases in turbidity on addition of urea and citrate. Measured and described turbidity values are in agreement, indicating that cross-linking of casein micelles with transglutaminase results in a covalently bound protein network, which is entirely stable to disruption by urea and/or citrate. This may offer potential applications for the use of cross-linked casein micelles as biocompatible protein micro-gel particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm061070m | DOI Listing |
Foods
January 2025
Food Studies and Policies Section, Food Safety Department, Dubai Municipality, Dubai P.O. Box 330127, United Arab Emirates.
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP on total plate count (TPC), yeasts and molds (YM), and lactic acid bacteria (LAB) in camel milk; (iii) investigate the behavior of several spoilage-causing bacteria during storage at 4 °C and 10 °C for up to 10 d post-HPP treatment; and (iv) assess the effect of HPP on the protein degradation of camel milk. The D-values for , O157:H7, and spp.
View Article and Find Full Text PDFFood Chem
January 2025
Food Quality & Design Group, Wageningen University and Research, 6708, WG, Wageningen, The Netherlands.
Bovine milk contains four types of caseins with β-casein being one of the most abundant. Previous studies on cow milk have reported seemingly contradictory effects of β-casein on milk renneting behavior. The aim of this study was to gain a better understanding of how β-casein affects the properties and renneting behavior of casein micelles by using a model system of reassembled casein micelles (RCMs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China. Electronic address:
Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored.
View Article and Find Full Text PDFFood Chem
January 2025
Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China,. Electronic address:
Baked milk is subjected to prolonged high-temperature processing, which often undermines its dispersion stability. While carrageenan is known to inhibit milk demixing, its role in stabilizing heat-induced protein aggregates remains inadequately understood. In this study, we isolated casein micelles (CM), whey protein-casein aggregates (WPCA), and whey protein aggregates (WPA) from baked milk through centrifugation.
View Article and Find Full Text PDFFoods
January 2025
A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, Moscow 119991, Russia.
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!