Sonolytic desorption of mercury from aluminum oxide: effects of pH, chloride, and organic matter.

Environ Sci Technol

Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio 43210, USA.

Published: February 2007

The effects of pH, Cl-, and humic acid (HA) on sonolytic desorption of Hg(II) from aluminum oxide were examined. Results showed that Hg(II) desorption was achieved by lowering the pH from 7.0 to 4.0. Ultrasound enhanced Hg(II) release at short times compared to both hydrodynamic mixing and that expected on the basis of the pH-dependent Hg(II) adsorption curve. However, prolonged sonication led to decreases in Hg(II) desorption due to occlusion by aluminum hydroxide precipitation induced by ultrasound. The presence of Cl- greatly improved Hg(II) desorption at pH 4.0 due to the formation of stable nonadsorbing HgCl2(0) complexes at low pH, reducing free Hg(II) ion in solution. However, Cl- did not affect Hg(ll) desorption at pH 8.0, where Hg(OH)2(0) is the dominant Hg species rather than HgCl2(0). Hg(ll) desorption from HA-laden Al2O3 was dominated by HA. The greater the desorption of HA, the greater the desorption of Hg(II). Ultrasound enhanced the initial Hg(II) release by facilitating HA desorption. However, decreases in Hg(II) desorption were observed over longer sonication times due to the sonochemically induced reassociation of desorbed HA back onto Al2O3. Information obtained in this study provides insight into understanding sonolytic release of Hg from Hg-contaminated particles and sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es0613052DOI Listing

Publication Analysis

Top Keywords

hgii desorption
16
desorption
10
hgii
10
sonolytic desorption
8
aluminum oxide
8
desorption hgii
8
ultrasound enhanced
8
hgii release
8
decreases hgii
8
hgll desorption
8

Similar Publications

Enhanced simultaneous voltammetric detection of lead, copper, and mercury using a MIL-101(Cr)-(COOH)@MWCNTs modified glassy carbon electrode.

Anal Chim Acta

February 2025

Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, 11566, Egypt; Department of Chemistry, Faculty of Science, Galala University, New Galala City, Suez, Egypt. Electronic address:

Background: Electrochemical methods, particularly those utilizing sensors, offer distinct advantages over classical analytical methods. They are cost-effective, compatible with mass fabrication, suitable for remote sensing, and can be designed as handheld analyzers. In this context, MIL-101(Cr)-(COOH)₂@MWCNTs was utilized for the first time as a modifier for GCE for the sensitive voltammetric detection of Pb(II), Cu(II), and Hg(II).

View Article and Find Full Text PDF

Mercury (Hg) is a hazardous heavy metal, non-biodegradable and toxic, posing a serious threat to aquatic life and human health. Therefore, the removal of Hg ions from contaminated water using effective and eco-friendly adsorbents is necessary. In the present study, three magnetic chitosan-based organic-inorganic nanocomposites, such as CS-MnFeO, CS-MnFeO-CoS, and CS-MnFeO-CoS-MWCNTs, were designed and constructed to investigate their capacity for adsorbing Hg ions from aqueous solutions.

View Article and Find Full Text PDF

Background: Atmospheric mercury (Hg) concentrations are quantified primarily through preconcentration on gold (Au) cartridges through amalgamation and subsequent thermal desorption into an atomic fluorescence spectrometry detector. This procedure has been used for decades, and is implemented in the industry-standard atmospheric Hg analyzer, the Tekran 2537. There is ongoing debate as to whether gaseous elemental mercury (Hg) or total gaseous mercury (TGM, Hg + Hg) is measured using Au cartridges.

View Article and Find Full Text PDF

Tracing anthropogenic mercury in soils from Fe-Hg mining/smelting area: Isotopic and speciation insights.

Chemosphere

June 2024

Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Praha 2, Czech Republic. Electronic address:

Mercury (Hg) stable isotope ratios supplemented by Hg solid speciation data were determined in soils in a former Fe-Hg mining/smelting area (Jedová hora, Czech Republic, Central Europe). The dominant Hg phase in the studied soils was found to be cinnabar (HgS). A secondary form of soil Hg(II) was represented by Hg weakly and strongly bound to mineral (micro)particles, as revealed by thermo-desorption analysis.

View Article and Find Full Text PDF

Global water pollution and scarcity of water resources are turning increasingly into serious threats to the survival of all living organisms on Earth. This study offers an influent strategy for the electrosynthesis of reduced graphene oxide/polyaniline/β-cyclodextrin (rGO/PAni/βCD) nanocomposite and its application to the removal/recovery of heavy elements (HEs) and rare-earth elements (REEs). Besides physicochemical and electrochemical studies, the surface morphological and statistical properties of fabricated nanocomposite electrode were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!