A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in Central Europe. | LitMetric

Sulfate aerosols are harmful as respirable particles. They also play a role as cloud condensation nuclei and have radiative effects on global climate. A combination of delta18O-SO4 data with catchment sulfur mass balances was used to constrain processes affecting S cycling in the atmosphere and spruce forests of the Czech Republic. Extremely high S fluxes via spruce throughfall and runoff were measured at Jezeri (49 and 80 kg S ha(-1) yr(-1), respectively). The second catchment, Na Lizu, was 10 times less polluted. In both catchments, delta18O-SO4 decreased in the following order: open-area precipitation > throughfall > runoff. The delta18O-SO4 values of throughfall exhibited a seasonal pattern at both sites, with maxima in summer and minima in winter. This seasonal pattern paralleled delta18O-H2O values, which were offset by -18 per thousand. Sulfate in throughfall was predominantly formed by heterogeneous (aqueous) oxidation of SO2. Wet-deposited sulfate in an open area did not show systematic delta18O-SO4 trends, suggesting formation by homogeneous (gaseous) oxidation and/or transport from large distances. The percentage of incoming S that is organically cycled in soil was similar under the high and the low pollution. High-temperature 18O-rich sulfate was not detected, which contrasts with North American industrial sites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es0610028DOI Listing

Publication Analysis

Top Keywords

throughfall runoff
8
seasonal pattern
8
sulfate
5
processes oxygen
4
oxygen isotope
4
isotope ratios
4
ratios atmospheric
4
atmospheric ecosystem
4
ecosystem sulfate
4
sulfate contrasting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!