Objective: To determine the disease-modifying activity and mechanism of action of the orally available methionine aminopeptidase type 2 inhibitor, [(1R)-1-carbamoyl-2-methyl-propyl]-carbamic acid-(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro [2.5] oct-6-yl ester (PPI-2458), in a rat model of peptidoglycan-polysaccharide (PG-PS)-induced arthritis.
Methods: Arthritis was induced in rats by administration of PG-PS, causing tarsal joint swelling and histopathologic changes characteristic of rheumatoid arthritis (RA). PPI-2458, a potent irreversible methionine aminopeptidase type 2 inhibitor, was administered orally every other day at 1, 5, or 10 mg/kg.
Results: In an in vitro osteoclastogenesis model, PPI-2458 potently inhibited osteoclast differentiation and bone resorption. In the rat PG-PS arthritis model, PPI-2458 afforded significant protection against established disease after therapeutic dosing. This in vivo activity of PPI-2458 was linked to the inhibition of methionine aminopeptidase type 2. Histopathologic assessment of affected joints showed improvement in processes of inflammation, bone resorption, and cartilage erosion, associated with significant improvement in all clinical indices. The protective effects of PPI-2458 against bone destruction in vivo, including the structural preservation of affected hind joints, correlated with improvements in bone histomorphometric markers, as determined by microfocal computed tomography and a significant decrease in systemic C-telopeptide of type I collagen, suggesting decreased osteoclast activity in vivo. Moreover, PPI-2458 prevented cartilage erosion as shown by a significant decrease in systemic cartilage oligomeric matrix protein.
Conclusion: The findings of this study suggest that PPI-2458 exerts disease-modifying activity in experimental arthritis through its direct inhibition of several pathophysiologic processes of this disease. These results provide a rationale for assessing the potential of PPI-2458 as a novel RA therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.22402 | DOI Listing |
Stroke
January 2025
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom. (Z.S., E.L.H., H.S.M.).
Background: Endothelial dysfunction and inflammation have been implicated in the pathophysiology of cerebral small vessel disease (SVD). However, whether they are causal, and if so which components of the pathways represent potential treatment targets, remains uncertain.
Methods: Two-sample Mendelian randomization (MR) was used to test the association between the circulating abundance of 996 proteins involved in endothelial dysfunction and inflammation and SVD.
Biochim Biophys Acta Mol Cell Res
January 2025
Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan. Electronic address:
Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.
Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Circ Res
January 2025
Cardiovascular Research Center (C.C., P.X., Z.Y., Y.S., E.S.L., J.D.R., M.C.H.), Massachusetts General Hospital, Boston, MA.
Background: Preeclampsia is a hypertensive disorder of pregnancy characterized by systemic endothelial dysfunction. The pathophysiology of preeclampsia remains incompletely understood. This study used human venous endothelial cell (EC) transcriptional profiling to investigate potential novel mechanisms underlying EC dysfunction in preeclampsia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!