PPARalpha deficiency in inflammatory cells suppresses tumor growth.

PLoS One

Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.

Published: February 2007

Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)alpha is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPARalpha deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and granulocyte depletion show that PPARalpha expressing granulocytes are necessary for tumor growth. Neutralization of thrombospondin-1 restores tumor growth in PPARalpha-deficient mice. These findings suggest that the absence of PPARalpha activity renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating stromal processes, such as angiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800345PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000260PLOS

Publication Analysis

Top Keywords

tumor growth
28
tumor
9
pparalpha deficiency
8
growth
7
pparalpha
5
deficiency inflammatory
4
inflammatory cells
4
cells suppresses
4
suppresses tumor
4
growth inflammation
4

Similar Publications

Objective: Among the different subtypes of invasive lung adenocarcinoma, lepidic predominant adenocarcinoma (LPA) has been recognized as the lowest-risk subtype with good prognosis. The aim of this study is to provide insight into the heterogeneity within LPA tumors and to better understand the influence of other sub-histologies on survival outcome.

Methods: Overall, 75 consecutive patients with LPA in pathologic stage I (TNM 8th edition) who underwent resection between 2010 and 2022 were included into this retrospective, single center analysis.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer.

Acta Pharm Sin B

December 2024

Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.

View Article and Find Full Text PDF

Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!