The human nuclear pregnane X receptor (PXR) responds to a wide variety of xenobiotic and endobiotic compounds, including pregnanes, progesterones, corticosterones, lithocholic acids, and 17beta-estradiol. In response to these ligands, the receptor controls the expression of genes central to the metabolism and excretion of potentially harmful chemicals from both exogenous and endogenous sources. Although the structural basis of PXR's interaction with small and large xenobiotics has been examined, the detailed nature of its binding to endobiotics, including steroid-like ligands, remains unclear. We report the crystal structure of the human PXR ligand-binding domain (LBD) in complex with 17beta-estradiol, a representative steroid ligand, at 2.65 A resolution. Estradiol is found to occupy only one region of PXR's expansive ligand-binding pocket, leaving a notable 1000 A3 of space unoccupied, and to bridge between the key polar residues Ser-247 and Arg-410 in the PXR LBD. Positioning the steroid scaffold in this way allows it to make several direct contacts to alphaAF of the receptor's AF-2 region. The PXR-estradiol complex was compared with that of other nuclear receptors, including the estrogen receptor, in complexes with analogous ligands. It was found that PXR's placement of the steroid is remarkably distinct relative to other members of the nuclear receptor superfamily. Using the PXR-estradiol complex as a guide, the binding of other steroid- and cholesterol-like molecules was then considered. The results provide detailed insights into the manner in which human PXR responds to a wide range of endobiotic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2006-0323DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
pxr responds
8
responds wide
8
endobiotic compounds
8
human pxr
8
pxr-estradiol complex
8
structure pregnane
4
pregnane receptor-estradiol
4
complex
4
receptor-estradiol complex
4

Similar Publications

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

Synthesis and Reactivity of Six-Membered Cyclic Diaryl λ3-Bromanes and λ3-Chloranes.

Angew Chem Int Ed Engl

January 2025

Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Despite the remarkable advancements in hypervalent iodine chemistry, exploration of bromine and chlorine analogues remains in its infancy due to their difficult synthesis. Herein, we introduce six-membered cyclic λ3-bromanes and λ3-chloranes. Through single-crystal X-ray structural analyses and conformational studies, we delineate the crucial bonding patterns pivotal for the thermodynamic stability of these compounds.

View Article and Find Full Text PDF

Multidimensional Resonance Controlled by Critical Size in Printed Binary Colloidal Crystals for High-Contrast Imaging.

J Am Chem Soc

January 2025

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs).

View Article and Find Full Text PDF

Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.

View Article and Find Full Text PDF

Implementing magnetic properties on demand with a dynamic lanthanoid-organic framework.

Chem Sci

December 2024

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain

We present the synthesis of a lanthanoid-organic framework (LOF) featuring a dynamic structure that exhibits tunable magnetic properties. The LOF undergoes breathing and gate-opening phenomena in response to changes in DMF content and N sorption, leading to the emergence of new crystal phases with distinct characteristics. Notably, the desolvated form of the LOF excels as a single-ion magnet, while the fully activated structure demonstrates impressive qubit properties, exhibiting Rabi oscillations up to 60 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!