Interrelationship of phytoalexin production and disease resistance in selected peanut genotypes.

J Agric Food Chem

National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 509, Dawson, Georgia 39842, USA.

Published: March 2007

In peanuts, a mechanism of resistance to fungal infection is reportedly due to the synthesis of stilbene phytoalexins, which are antibiotic, low molecular weight metabolites. The phytoalexin-associated response of different peanut genotypes to exogenous invasion in the field has not been investigated and may be useful for breeding resistant peanut cultivars. Five peanut genotypes, Georgia Green, Tifton 8, C-99R, GK-7 High Oleic, and MARC I, which differ in resistance to major peanut diseases, were investigated for their ability to produce phytoalexins under field conditions in South Georgia in 2001 and 2002. Five known peanut phytoalexins, trans-resveratrol, trans-arachidin-1, trans-arachidin-2, trans-arachidin-3, and trans-3'-isopentadienyl-3,5,4'-trihydroxystilbene, were quantitated. The phytoalexins were measured in peanuts of different pod maturity (yellow, orange, brown, and black) with or without insect pod damage (externally scarified or penetrated). Kernels from insect-damaged pods of C-99R and Tifton 8 genotypes had significantly higher concentrations of phytoalexins than other genotypes. The same genotypes were the most resistant to tomato spotted wilt virus and late leaf spot, while MARC I, which is highly susceptible to these diseases, produced very low concentrations of phytoalexins. However, there was no significant difference in phytoalexin production by undamaged peanut pods of all tested genotypes. trans-Arachidin-3 and trans-resveratrol were the major phytoalexins produced by insect-damaged peanuts. In damaged seeds, the concentrations of trans-3'-isopentadienyl-3,5,4'-trihydroxystilbene were significantly higher in Tifton 8 as compared to other genotypes. There was an association between total phytoalexin production and published genotype resistance to major peanut diseases. Stilbene phytoalexins may be considered potential chemical markers in breeding programs for disease-resistant peanuts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf063478gDOI Listing

Publication Analysis

Top Keywords

phytoalexin production
12
peanut genotypes
12
peanut
8
genotypes
8
phytoalexins
8
stilbene phytoalexins
8
resistance major
8
major peanut
8
peanut diseases
8
concentrations phytoalexins
8

Similar Publications

Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases.

Pharmacol Rep

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.

View Article and Find Full Text PDF

Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.

View Article and Find Full Text PDF

Nutritional status being the first line of defense for host plants, determines their susceptibility or resistance against invading pathogens. In recent years, the applications of plant nutrient related products have been documented as one of the best performers and considered as alternatives or/and supplements in plant disease management compared to traditional chemicals. However, knowledge about application of plant nutrient related products for the management of destructive fungal pathogen Fusarium oxysporum f.

View Article and Find Full Text PDF

Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing HO.

Cell Res

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.

Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.

View Article and Find Full Text PDF

Resveratrol is an important phytoalexin that adapts to and responds to stressful conditions and plays various roles in health and medical therapies. However, it is only found in a limited number of plant species in low concentrations, which hinders its development and utilization. Chalcone synthase (CHS) and stilbene synthase (STS) catalyze the same substrates to produce flavonoids and resveratrol, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!