The fluorescent nucleotide analogue 8-azaguanosine-5'-triphosphate (8azaGTP) is prepared easily by in vitro enzymatic synthesis methods. 8azaGTP is an efficient substrate for T7 RNA polymerase and is incorporated specifically opposite cytosine in the transcription template, as expected for a nucleobase analogue with the same Watson-Crick hydrogen bonding face as guanine. 8-Azaguanine (8azaG) in oligonucleotides also is recognized as guanine during ribonuclease T1 digestion. Moreover, replacement of guanine by 8azaG does not alter the melting temperature of base-paired RNAs significantly, evidence that 8azaG does not disrupt stacking and hydrogen bonding interactions. 8azaGTP displays a high fluorescent quantum yield when the N1 position is deprotonated at high pH, but fluorescence intensity decreases significantly when N1 is protonated at neutral pH. Fluorescence is quenched 10-fold to 100-fold when 8azaG is incorporated into base-paired RNA and remains pH-dependent, although apparent pKa values determined from the pH dependence of fluorescence intensity shift in the basic direction. Thus, 8azaG is a guanine analogue that does not perturb RNA structure and displays pH-dependent fluorescence that can be used to probe the ionization states of nucleobases in structured RNAs. A key application will be in determining the ionization state of active site nucleobases that have been implicated in the catalytic mechanisms of RNA enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja067699e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!