The synthesis and the structure of the new potentially heptadentate ligand 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene (H5L) is described. The reaction in pyridine or DMF of this ligand with various M(AcO)2 salts (M = NiII, CoII, MnII) leads to very different products depending on the metal. Thus, the dinuclear complexes [M2(H3L)2(py)4] (M = NiII, 1; CoII, 2) or the linear zigzag tetranuclear clusters [Mn4(H2L)2(AcO)2(py)5] (3) and [Mn4(H2L)2(AcO)2(dmf)4] (4) have been synthesized and characterized crystallographically. Slow oxidation of complex 3 leads to the formation of the novel mixed-valence linear complex [Mn3(HL)2(py)6] (5), displaying an unprecedented asymmetric MnIIIMnIIIMnII topology. The coordination geometry of complexes 1 to 5 has been analyzed and discussed by means of continuous shape measures. Magnetic measurements of 3 and 5 demonstrate that the metals within these complexes weakly interact magnetically with coupling constants of J1 = -1.13 cm-1 and J2 = -0.43 cm-1 (S = 0) for complex 3 and J1 = -5.4 cm-1 and J2 = -0.4 cm-1 (S = 5/2) for complex 5 (using the H = -Sigma2JijSiSj convention). These results are consistent with X-band EPR measurements on these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic062075v | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, Imam Khomeini International University, P.O. Box 288, Qazvin, Iran.
A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.
View Article and Find Full Text PDFChemistry
December 2024
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149, Münster, Germany.
Two artificial imidazole-derived nucleobases, Im (3H-imidazo[4,5-f]quinolin-5-ol) and Im (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions Co, Ni and Zn, as well as with the lanthanoid ions Eu and Sm, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.
View Article and Find Full Text PDFBiometals
December 2024
Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India.
The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations.
View Article and Find Full Text PDFEnviron Res
December 2024
Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
N-termini Cyano group (CN) in metal hexacyanoferrates (MHCF) have been identified as specific-affinity sites for palladium (Pd), but C-termini CN do not effectively serve as Pd adsorption sites due to their stronger bonds with the metal ligands (M), which reduces the activity and density of CN. Herein, the optimization of directional coordination of cyano group C/N-termini by modulating the electronic structure of the M (Fe, Co, and Ni) in MHCF was investigated to reinforce the Pd recovery. Spectroscopic analyses and DFT calculations revealed that NiHCF exhibited N-site mono-coordination, whereas CoHCF displayed C-site mono-coordination due to spin-exchange interactions, leading to the strengthened N-Co bonds and weakened Fe-C bonds.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain.
The recovery of Co(II), Mn(II), Ni(II), and Cu(II) from black mass e-waste solutions through cellulose nanofibers (CNFs) and nanocrystals (CNCs) was investigated. These materials were synthetized by TEMPO-oxidation followed by high-pressure homogenization, and acid hydrolysis, respectively. The NC characterization included the measurement of consistency, cationic demand, carboxylic content, dissolved amorphous cellulose, and transmittance at λ = 600 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!