A self-consistent mean field theory for diffusion in alloys.

Faraday Discuss

CEA Saclay, Service de Recherches de Métallurgie Physique, bât. 520, 91 191, Gif-sur-Yvette, France.

Published: April 2007

Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients Lij. In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The Lij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the Lij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the Lij is studied as a function of the microscopic parameters of the jump frequency. The Lij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial (V. Barbe and M. Nastar, Philos. Mag., 2006, in press, ref. 2) are used to study the effect of an on-site rotation of the dumbbell on the transport.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b605834eDOI Listing

Publication Analysis

Top Keywords

self-consistent field
8
distribution function
8
kinetic equations
8
nastar philos
8
philos mag
8
jump frequency
8
lij
5
field theory
4
theory diffusion
4
diffusion alloys
4

Similar Publications

Equation for Calculation of Critical Current Density Using the Bean's Model with Self-Consistent Magnetic Units to Prevent Unit Conversion Errors.

Materials (Basel)

January 2025

Laboratory for Heteroepitaxial Growth of Functional Materials & Devices, Department of Chemical & Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.

This study analyzes the calculation of the critical current density by means of Bean's critical state model, using the equation formulated by Gyorgy et al. and other similar equations derived from it reported in the literature. While estimations of using Bean's model are widely performed, improper use of different equations with different magnetic units and pre-factors leads to confusion and to significant errors in the reported values of .

View Article and Find Full Text PDF

Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.

View Article and Find Full Text PDF

Accelerating Fock Build via Hybrid Analytical-Numerical Integration.

J Phys Chem A

January 2025

Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China.

A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix [], the density matrix is first decomposed into two parts, the superposition of atomic density matrices and the rest = -. While [] is evaluated analytically, [] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations.

View Article and Find Full Text PDF

Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.

View Article and Find Full Text PDF

ConspectusColloidal nanocrystals are an interesting platform for studying the surface chemistry of materials due to their high surface area/volume ratios, which results in a large fraction of surface atoms. As synthesized, the surfaces of many colloidal nanocrystals are capped by organic ligands that help control their size and shape. While these organic ligands are necessary in synthesis, it is often desirable to replace them with other molecules to enhance their properties or to integrate them into devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!