Sequential extraction experiments were used to study the chemical mobility of fluorine in rocks. The results show that there are quite big differences in chemical mobility of fluorine in rocks of different types. Fluorine in carbonate rock is very active, in which the proportion of leachable fluorine is generally more than 75%. Fluorine in black rocks of Lower Cambrian is closely related to their different metamorphosed grades, in which fluorine in black carbonaceous slate with higher metamorphosed grade mostly has lower leachability than black shale and black siliceous rock. Generally speaking, the leachable percentage of fluorine is high in phosphorite rocks and low in phyllite. The leachable fluorine in diabase is in direct proportion to its fluorine concentration. There are some differences in chemical mobility of fluorine in stone coal of different ages. Fluorine in stone coal of Silurian has higher leachability than stone coal of Cambrian.
Download full-text PDF |
Source |
---|
Phys Chem Chem Phys
January 2025
STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11OQX, UK.
The dynamics and functionality of proteins are significantly influenced by their interaction with water. For lyophilised ( ≤ 0.05 where = g of HO per g of protein) and weakly hydrated systems ( ≤ 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemistry, South China Normal University, Guangzhou 510006, China. Electronic address:
Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).
View Article and Find Full Text PDFWater Res
December 2024
Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, PO BOX 47, Wageningen 6700 AA, the Netherlands.
Binding of glyphosate (PMG) to metal (hydr)oxides controls its availability and mobility in natural waters and soils, and these minerals are often suggested for the removal of PMG from wastewaters. However, a solid mechanistic and quantitative description of the adsorption behavior and surface speciation on these surfaces is still lacking, while it is essential for understanding PMG behavior in aquatic and terrestrial systems. This study gives new insights through advanced surface complexation modeling of new and previously published adsorption data, supplemented with MO/DFT calculations of the geometry, thermochemistry and theoretical infrared (IR) spectra of the surface complexes.
View Article and Find Full Text PDFElectrophoresis
December 2024
Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
An empirical equation relating electrophoretic mobility and ionic strength was proposed. The equation includes a number of parameters that are found using the mobilities of reference ions: two coefficients in the numerator describing the linear relationship of the multiplier in front of the square root of the ionic strength with the product of the ion mobility in the background electrolyte (BGE) without additives by the modulus of the charge number, raised to a certain power, and also the multiplier in the denominator before the square root of the ionic strength. The proposed equation was tested using the mobilities measured in BGEs with the addition of sodium chloride to adjust ionic strength and sulfated β-cyclodextrin (S-β-CD) for 11 anions with charge numbers from -1 to -4.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, CHINA.
Porous organic polymers have shown great potential in photocatalytic CO2 reduction due to their unique tunable structure favoring gas adsorption and metal sites integration. However, efficient photocatalysis in porous polymers is greatly limited by the low surface reactivity and electron mobility of bulk structure. Herein, we incorporate TiO2 nanoparticles and Ni(II) sites into a layered cationic imidazolium polymer (IP), in which the imidazolium moieties and free anions can stabilize the key intermediates and enhance the reaction kinetics of CO2 reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!