The dominant mutant genes responsible for the spring habit were studied in seven rye plants according to the developed scheme of two-step crosses and analysis of the F2 progeny. The genotypes with a particular genetic formula (heterozygote) were obtained by crossing the studied plants with the winter rye Korotkostebel'naya 69 carrying the recessive genes that control the winter habit of plants. Heterozygotes yielded by different combinations were crossed with each other. The F1 hybrids were either self-pollinated to obtain F2 progeny or crossed with the winter rye. Analysis of the progeny suggests that all seven plants carry the same gene.

Download full-text PDF

Source

Publication Analysis

Top Keywords

analysis progeny
8
winter rye
8
[analysis dominant
4
dominant spring
4
spring mutations
4
mutations rye]
4
rye] dominant
4
dominant mutant
4
mutant genes
4
genes responsible
4

Similar Publications

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.

View Article and Find Full Text PDF

Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population.

View Article and Find Full Text PDF

Unlabelled: Recombination is a significant factor driving the evolution of RNA viruses. The prevalence and variation of porcine reproductive and respiratory syndrome virus (PRRSV) in China have been increasing in complexity due to extensive interlineage recombination. When this recombination phenomenon occurs in live vaccine strains, it becomes increasingly difficult to prevent and control PRRSV.

View Article and Find Full Text PDF

High-density genetic map construction and QTL analysis of the first flower node in kenaf using RAD-seq.

BMC Plant Biol

December 2024

Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China.

Background: In kenaf (Hibiscus cannabinus L.) which is an important natural fiber crop, the first flower node is closely linked to fiber yield. However, the genetic mechanisms controlling the first flower node remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!