An Escherichia coli model system was developed to estimate the capacity of the integrase of the Drosophila melanogaster retrotransposon gypsy (mdg4) for precise excision of the long terminal repeat (LTR) and, hence, the entire gypsy. The gypsy retrotransposon was cloned in the form of a PCR fragment in the pBlueScript II KS+ (pBSLTR) vector, and the region of the second open reading frame (INT ORF2) of this element encoding integrase was cloned under the lacZ promoter in the pUC19 vector and then recloned in pACYC184 compatible with pBSLTR. The LTR was cloned in such a manner that its precise excision from the recombinant plasmid led to the restoration of the nucleotide sequence and the function of the ORF of the lacZ gene contained in the vector; therefore, it was detected by the appearance of blue colonies on a medium containing X-gal upon IPTG induction. Upon IPTG induction of E. coli XL-1 Blue cells obtained by cotransformation with plasmids pACCint and pBSLTR on an X-gal-containing medium, blue clones appeared with a frequency of 1 x 10(-3) to 1 x 10(-4), the frequency of spontaneously appearing blue colonies not exceeding 10(-9) to 10(-8). The presence of blue colonies indicated that that the integrase encoded by the INT ORF2 (pACYC 184) fragment was active. After the expression of the integrase, it recognized and excised the gypsy LTR from pBSLTR, precisely restoring the nucleotide sequence and the function of the lacZ gene, which led to the expression of the beta-galactosidase enzymatic activity. PCR analysis confirmed that the LTR was excised precisely. Thus, the resultant biplasmid model system allowed precise excisions of the gypsy LTR from the target site to be detected. Apparently, the gypsy integrase affected not only the LTR of this mobile element, but also the host genome nucleotide sequences. The system is likely to have detected only some of the events occurring in E. coli cells. Thus, the integrase of gypsy is actually capable of not only transposing this element by inserting DNA copies of the gypsy retrotransposon to chromosomes of Drosophila, but also excising them, gypsy is excised via a precise mechanism, with the original nucleotide sequence of the target site being completely restored. The obtained data demonstrate the existence of alternative ways of the transposition of retrotransposons and, possibly, retroviruses, including gypsy (mdg4).

Download full-text PDF

Source

Publication Analysis

Top Keywords

gypsy mdg4
12
nucleotide sequence
12
blue colonies
12
gypsy
11
excision long
8
long terminal
8
drosophila melanogaster
8
escherichia coli
8
coli cells
8
model system
8

Similar Publications

Article Synopsis
  • The study focuses on a special group of genes called piRNAs that help female animals stay fertile by stopping bad DNA pieces known as transposons from becoming active.
  • Scientists experimented with parts of these genes to learn how they work and found that a protein called Traffic Jam helps control them.
  • By looking at the effects of reducing Traffic Jam, the researchers discovered that it not only affects the piRNAs but also helps prevent problems caused by the transposons.
View Article and Find Full Text PDF

Inter-cellular movement of "prion-like" proteins is thought to explain propagation of neurodegeneration between cells. For example, propagation of abnormally phosphorylated cytoplasmic inclusions of TAR-DNA-Binding protein (TDP-43) is proposed to underlie progression of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). But unlike transmissible prion diseases, ALS and FTD are not infectious and injection of aggregated TDP-43 is not sufficient to cause disease.

View Article and Find Full Text PDF

Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes.

View Article and Find Full Text PDF

Retrotransposons are one type of mobile genetic element that abundantly reside in the genomes of nearly all animals. Their uncontrolled activation is linked to sterility, cancer and other pathologies, thereby being largely considered detrimental. Here we report that, within a specific time window of development, retrotransposon activation can license the host's immune system for future antiviral responses.

View Article and Find Full Text PDF

NURF301 contributes to gypsy chromatin insulator-mediated nuclear organization.

Nucleic Acids Res

August 2022

Nuclear Organization and Gene Expression Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

Article Synopsis
  • Chromatin insulators are important DNA-protein complexes that regulate gene expression by preventing repressive chromatin spread and blocking interactions between enhancers and promoters.
  • In Drosophila, the gypsy insulator complex is made up of three key proteins (CP190, Su(Hw), and Mod(mdg4)67.2) that concentrate in structures called insulator bodies, and their positioning is influenced by the nucleosome remodeling factor NURF301/E(bx).
  • NURF301 enhances the function of the gypsy insulator by promoting interactions between insulator proteins, repositioning nucleosomes, and facilitating the spatial organization of insulator bodies within the nucleus.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!