Particles generated from numerous anthropogenic sources have the potential to cause or exacerbate lung diseases, including asthma, bronchitis, and COPD. Fibrotic reactions are a component of all of these pulmonary diseases, and involve the progressive deposition of collagen by pulmonary fibroblasts. The reactivity, toxicity, and fibrogenic potential of particles in the lung depends on a variety of factors including particle size, surface area, and composition. Smaller particles, particularly in the nanosized range, have more toxic and fibrogenic capacity due to a higher surface-to-mass ratio and greater oxidant-generating potential. Composition is also an important determinant in the fibrotic response to particles. Transition metals, bacterial lipopolysaccaride, and polycyclic aromatic hydrocarbons are some of the toxic components of particles that activate intracellular signaling pathways that culminate in the production of profibrotic cytokines and growth factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01926230601060009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!