The causes of early genomic events underlying the development of prostate cancer (CaP) remain unclear. The onset of chromosomal instability is likely to facilitate the formation of crucial genomic aberrations both in the precursor lesion high-grade prostatic intraepithelial neoplasia (HPIN) and in CaP. Instability generated by telomere attrition is one potential mechanism that could initiate chromosomal rearrangements. In this study, normalized telomere length variation was examined in a cohort of 68 men without CaP who had HPIN only on prostatic biopsies. Multiple significant associations between telomere attrition and eventual diagnosis of CaP in the HPIN and in the surrounding stroma were found. Kaplan-Meier analysis of telomere length demonstrated a significantly increased risk for the development of cancer with short telomeres in the surrounding stroma [P = .035; hazard ratio (HR) = 2.12; 95% confidence interval (95% CI) = 0.231-0.956], and a trend for HPIN itself (P = .126; HR = 1.72; 95% CI = 0.287-1.168). Cox regression analysis also demonstrated significance between the time from the original biopsy to the diagnosis of cancer and telomere length in HPIN and in the surrounding stroma. These analyses showed significance, both alone and in combination with baseline prostate-specific antigen, and lend support to the hypothesis that telomere attrition in prostatic preneoplasia may be fundamental to the generation of chromosomal instability and to the emergence of CaP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1803037 | PMC |
http://dx.doi.org/10.1593/neo.06745 | DOI Listing |
Int J Mol Sci
January 2025
Department of Medicine V, Heidelberg University, 69117 Heidelberg, Germany.
To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA.
Background/objectives: As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production.
View Article and Find Full Text PDFActa Neuropsychiatr
January 2025
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
Objective: Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders.
Methods: Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ ( = 301) or BD ( = 211) and a healthy control group (HC, = 378).
Ann Hematol
January 2025
Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
Donor cell leukemia (DCL), in which malignancy evolves from donor's stem cells, is an infrequent complication of allogeneic hematopoietic stem cell transplantation. Acute promyelocytic leukemia (APL) derived from donor cell is extremely rare and only four cases have been reported to date. Herein we report a case of donor cell-derived APL developing 32 months after haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide for myelodysplastic syndromes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!