Background: Volatile anesthetics are commonly used for general anesthesia. However, these can induce profound cardiovascular alterations. Xenon is a noble gas with potent anesthetic and analgesic properties. However, it is uncertain whether xenon alters myocardial function. The aim of this study was therefore to investigate left ventricular function during anesthesia with xenon compared with isoflurane.
Methods: The authors performed a randomized multicenter trial to compare xenon with isoflurane with respect to cardiovascular stability and adverse effects in patients without cardiac diseases scheduled for elective surgery. Two hundred fifty-nine patients were enrolled in this trial, of which 252 completed the study according to the protocol. Patients were anesthetized with xenon or isoflurane, respectively. Before administration of the study drugs and at four time points, the effects of both anesthetics on left ventricular function were investigated using transesophageal echocardiography.
Results: Global hemodynamic parameters were significantly altered using isoflurane (P < 0.05 vs. baseline), whereas xenon only decreased heart rate (P < 0.05 vs. baseline). In contrast to xenon, left ventricular end-systolic wall stress decreased significantly in the isoflurane group (P < 0.05 vs. baseline). Velocity of circumferential fiber shortening was decreased significantly in the xenon group but showed a more pronounced reduction during isoflurane administration (P < 0.05 vs. baseline). The contractile index (difference between expected and actually measured velocity of circumferential fiber shortening) as an independent parameter for left ventricular function was significantly decreased after isoflurane (P < 0.0001) but unchanged using xenon.
Conclusions: Xenon did not reduce contractility, whereas isoflurane decreased the contractile index, indicating that xenon enables favorable cardiovascular stability in patients without cardiac diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-200703000-00010 | DOI Listing |
JAMA Pediatr
January 2025
Department of Cardiology, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts.
Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.
Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.
Int J Cardiovasc Imaging
January 2025
Michigan Medicine, University Hospital, Floor B1 Reception C 1500 E Medical Center Dr SPC 5030, Ann Arbor, MI, 48109, USA.
Anderson-Fabry disease (AFD) is a X-linked lysosomal storage disorder that can result in cardiac dysfunction including left ventricular hypertrophy (LVH) and conduction abnormalities (Frontiers in cardiovascular medicine vol. 10) [1]. The manifestations of AFD in women may be isolated to one organ and occur late in life due to the random inactivation of the X chromosome.
View Article and Find Full Text PDFEgypt Heart J
January 2025
Department of Cardiology, Lianyungang No 1 People's Hospital, No. 6 East Zhenhua Road, Haizhou District, Lianyungang, 222061, Jiangsu, China.
Background: The rate at which atrial fibrillation (AF) patients experience a return of symptoms after catheter ablation is significant, and there are multiple risk factors involved. This research intends to perform a meta-analysis to explore the risk factors connected to the recurrence of AF in patients following catheter ablation.
Methods: The PubMed, Cochrane Library, WOS, Embase, SinoMed, CNKI, Wanfang, and VIP databases were explored for studies from January 1, 2000 to August 10, 2021, and research meeting the established inclusion requirements was chosen.
Eur Heart J
January 2025
Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
Background And Aims: Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk.
Methods: Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization.
Endocr Connect
January 2025
P Kamenický, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, 94275, France.
Background: Arterial hypertension and left ventricular hypertrophy and remodeling are independent cardiovascular risk factors in patients with Cushing's syndrome. Changes in the renin-angiotensin system and in the mineralocorticoid axis activity could be involved as potential mechanisms in their pathogenesis, in addition to cortisol excess.
Methods: In this ancillary study of our previous study prospectively investigating patients with ACTH-dependent Cushing's syndrome by cardiac magnetic resonance imaging (NCT02202902), 11 patients without any interfering medication were cross-sectionally compared to 20 control subjects matched for age, sex and body mass index.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!