Strains of Equine arteritis virus (EAV) differ in the severity of the disease that they induce in horses. Infectious cDNA clones are potentially useful for identification of genetic determinants of EAV virulence; to date, two clones have been derived from a cell culture-adapted variant of the original (Bucyrus) isolate of EAV, and it has previously been shown that recombinant virus derived from one of these (rEAV030) is attenuated in horses. A complete cDNA copy of the genome of the virulent Bucyrus strain of EAV has now been assembled into a plasmid vector. In contrast to rEAV030, recombinant progeny virus derived from this clone caused severe disease in horses, characterized by pyrexia, oedema, leukopenia, high-titre viraemia and substantial nasal shedding of virus. The availability of infectious cDNA clones that produce recombinant viruses of different virulence to horses will facilitate characterization of the virulence determinants of EAV through reverse genetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.82415-0 | DOI Listing |
Anal Chem
January 2025
School of Chemistry, University College Dublin, Belfield, Dublin D04 N2E5, Ireland.
Infectious diseases pose a growing challenge in healthcare, with the increasing rate of antimicrobial resistance limiting therapeutic options available for treatment. Rapid detection of infections at the earliest opportunity can significantly improve patient outcomes. In this report, ion current rectifying quartz nanopipettes with ca.
View Article and Find Full Text PDFJ Med Virol
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address:
Clinical short-read exome and genome sequencing approaches have positively impacted diagnostic testing for rare diseases. Yet, technical limitations associated with short reads challenge their use for the detection of disease-associated variation in complex regions of the genome. Long-read sequencing (LRS) technologies may overcome these challenges, potentially qualifying as a first-tier test for all rare diseases.
View Article and Find Full Text PDFVet Microbiol
February 2025
Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States. Electronic address:
Porcine reproductive and respiratory syndrome (PRRS), caused by the highly variable PRRS virus (PRRSV), presents a significant challenge to the swine industry due to its pathogenic and economic burden. The virus evades host immune responses, particularly interferon (IFN) signaling, through various viral mechanisms. Traditional vaccines have shown variable efficacy in the field, prompting the exploration of novel vaccination strategies.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America.
Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!