Ditercalinium (NSC 366241) is a 7H-pyrido[4,3-c]carbazole dimer with a diethylbipiperidine rigid chain linking the two heterocyclic rings. Ditercalinium is characterized by a high DNA affinity and bisintercalating ability, associated with potent antitumor properties, involving an original mechanism of action. Unfortunately as ditercalinium is hepatotoxic, its clinical evaluation has been interrupted. In order to eliminate or at least minimize the serious drawbacks related to its toxic effects, several chemical modifications have been made to the structure of ditercalinium, and their influence has been evaluated by measuring the DNA affinities, intercalation properties, and toxicity toward leukemia cells of the newly synthesized dimers. Reduction of the pyridinic moieties of ditercalinium, in order to suppress the permanent charges provided by the quaternizing chain, led to an almost complete loss of activity, although the DNA bisintercalating property of the dimer was preserved. Dimerization of the 7H-pyrido[4,3-c]carbazole rings by introduction of the rigid spacer on the N7- or C6-positions corresponding to the convex face of the pyridocarbazole, instead of the N2-position in ditercalinium, led to DNA bisintercalating dimers practically devoid of antitumor properties. However after quaternarization of the N2 atoms, the dimer linked by the N7 atoms exhibited a very high DNA affinity (greater than 10(9) M-1) and recovered antitumor activity, supporting the requirement of positive charges for the emergence of antitumor activity in these dimers. Introduction on the C6 of the 7H-pyridocarbazole ring of an aminomethyl or carboxyl group, a sugar residue, or C or N free amino acids such as Lys or Glu has also been carried out, in order to increase the hydrophilic properties of the molecules or to enable them to use amino acid transport systems. Although some of these compounds were active, none of them exhibited the pharmacological potency of ditercalinium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm00079a009 | DOI Listing |
J Biol Chem
January 2025
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany. Electronic address:
Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.
View Article and Find Full Text PDFMolecules
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.
A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFLife (Basel)
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!