Purpose: Eye motility disorders with axial high myopia and an enlarged globe are often characterized by a hypotropia of the affected eye, usually referred to as heavy-eye syndrome. Based on an intuitive interpretation of magnetic resonance (MR) images, the cause of the hypotropia has typically been assigned to the rectus muscles. In this study, the hypothesis that the oblique muscles play an important role in the underlying biomechanical disorder of this type of strabismus was investigated.
Methods: The hypothesis was tested by (1) a retrospective analysis of surgical results in one patient with unilateral axial high myopia; and (2) MR images of orbital tissues in two further patients with unilateral axial high myopia.
Results: MR images demonstrated a pattern of extraocular muscle path displacements similar to those described previously, but also a uniform decrease in the cross-sectional area of the inferior oblique muscles. Computer modeling required decreased inferior oblique contractility in addition to displaced extraocular muscle paths to recreate the observed motility pattern accurately.
Conclusions: Patients with axial high myopia regularly show a reduction in the diameter of the inferior oblique. The resultant reduction in muscle-strength is important for the correct explanation of this complex eye movement disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.06-0769 | DOI Listing |
Ultrasound Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Biomedical Engineering Programme, The University of Hong Kong, Hong Kong. Electronic address:
Objective: Near-field (NF) clutter filters are critical for unveiling true myocardial structure and dynamics. Randomized singular value decomposition (rSVD) stands out for its proven computational efficiency and robustness. This study investigates the effect of rSVD-based NF clutter filtering on myocardial motion estimation.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Institute of High Energy Physics Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing, Beijing, Beijing, 100049, CHINA.
Objective: Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response (LORs).
View Article and Find Full Text PDFAm J Transl Res
December 2024
Respiratory and Critical Care Medicine, Nan'an City Hospital Quanzhou 362399, Fujian, China.
Objective: To evaluate the application value of CT diagnostic technology based on the Shukun Imaging Post-Processing System for early screening and diagnosis of lung cancer.
Methods: A total of 35 patients diagnosed with lung cancer postoperatively and 53 patients with benign nodules were included in this retrospective study, all of whom were treated in the Department of Thoracic and Cardiovascular Surgery of the Second Affiliated Hospital of Fujian Medical University from January 2020 to December 2023. All patients underwent chest spiral CT examinations.
Importance: For myopia control to be beneficial, it would be important that the benefit of treatment (slowed eye growth) is not lost because of faster than normal growth (rebound) after discontinuing treatment.
Objective: To determine whether there is a loss of treatment effect (rebound) after discontinuing soft multifocal contact lenses in children with myopia.
Design, Setting, And Participants: The Bifocal Lenses in Nearsighted Kids 2 (BLINK2) cohort study involved children with myopia (aged 11-17 years at BLINK2 baseline) who completed the BLINK Study randomized clinical trial.
Dalton Trans
January 2025
Czech Academy of Sciences, J. Heyrovsky Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the Cu complex of 1,8-bis(2-hydroxybenzyl)-cyclam (HL), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!