Cys-loop ligand-gated ion channels assemble as pentameric proteins, and each monomer contributes two structural elements: an extracellular ligand-binding domain (LBD) and a transmembrane ion channel domain. Models of receptor activation include rotational movements of subunits leading to opening of the ion channel. We tested this idea using substituted cysteine accessibility to track conformational changes in the inner beta sheet of the LBD. Using a nondesensitizing chick alpha7 background (L(247)T), we constructed 18 consecutive cysteine replacement mutants (Leu(36) to Ile(53)) and tested each for expression of acetylcholine (ACh)-evoked currents and functional sensitivity to thiol modification. We measured rates of modification in the presence and absence of ACh to identify conformational changes associated with receptor activation. Resting modification rates of eight substituted cysteines in the beta1 and beta2 strands and the sequence between them (loop 2) varied over several orders of magnitude, suggesting substantial differences in the accessibility or electrostatic environment of individual side chains. These differences were in general agreement with structural models of the LBD. Eight of 18 cysteine replacements displayed ACh-dependent changes in modification rates, indicating a change in the accessibility or electrostatic environment of the introduced cysteine during activation. We were surprised that the effects of agonist exposure were difficult to reconcile with rotational models of activation. Acetylcholine reduced the modification rate of M(40)C but increased it at N(52)C despite the close physical proximity of these residues. Our results suggest that models that depend strictly on rigid-body rotation of the LBD may provide an incomplete description of receptor activation.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.106.033092DOI Listing

Publication Analysis

Top Keywords

conformational changes
12
receptor activation
12
changes inner
8
ion channel
8
modification rates
8
accessibility electrostatic
8
electrostatic environment
8
activation
5
modification
5
agonist-driven conformational
4

Similar Publications

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Use of Steered Molecular Dynamics to Explore the Conformational Changes of SNARE Proteins.

Methods Mol Biol

January 2025

Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China.

Steered Molecular Dynamics (SMD) simulation is a powerful computational simulation technique that enables the controlled manipulation of molecular systems by applying external forces. This method is frequently utilized to investigate the slow processes of biomolecular systems that occur within sub-second to second time scales, achieved through SMD simulations that only span nanoseconds. SMD simulation can be utilized to study the detailed mechanism of protein conformational changes, protein unfolding, and ligand dissociation, etc.

View Article and Find Full Text PDF

ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.

View Article and Find Full Text PDF

The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients.

View Article and Find Full Text PDF

Serum assisted PD-L1 aptamer screening for improving its stability.

Sci Rep

January 2025

School of Public Health, Jining Medical University, Jining, 272067, People's Republic of China.

Aptamers have shown potential for diagnosing clinical markers and targeted treatment of diseases. However, their limited stability and short half-life hinder their broader applications. Here, a real sample assisted capture-SELEX strategy is proposed to enhance the aptamer stability, using the selection of specific aptamer towards PD-L1 as an example.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!