Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transplantation of different types of cells into the eye to treat retinal diseases has advanced in the past 20 years. One of the types of cells used for transplantation is the iris pigment epithelial (IPE) cell, because autologous IPE cells are easily obtained and their properties are similar to those of retinal pigment epithelial (RPE) cells and retinal cells. IPE cells are transplanted as; freshly isolated or cultured cells to replace defective or diseased RPE cells, genetically modified IPE cells for delivering target molecules to the retina or RPE, and retinal progenitor cells. IPE cells have also been transplanted for non-retinal disorders. The survival of the transplanted cells in the host is an important factor for the success of transplantation. Autologous IPE cells have been found in the transplanted subretinal space and were able to phagocytose rod outer segments even 6 months after transplantation. Allogeneic and xenogenic cells will not remain in the region longer than autologous cells. Allogenic cells transplanted into the subretinal space are rejected in humans. Thus, we have transplanted cultured autologous IPE cells in 56 patients with age-related macular degeneration. The long-term results (more than 2 years with a maximum of 8 years) showed that the visual acuity (VA) was significantly improved over the pre-transplantation VA, although a slight decrease of VA was observed 2 weeks after the transplantation. One patient showed a vasculitis-like lesion. IPE cells that were transduced with neurotrophic factors by plasmid or viral vectors have also been transplanted in animals. We have transduced several neurotrophic factor genes into IPE cells with a plasmid vector, adeno-associated virus, or adenovirus. Transplantation of these transduced IPE cells into the subretinal space rescued photoreceptor cells from several types of photoreceptor toxicities. In addition, transduction of a gene into the IPE cells suppressed the systemic dissemination of the viral genome. The neuroprotective effects of the IPE cells were different for the different types of neurotrophic factor, and some of the neurotrophic factors may enhance systemic immune reaction after transplantation. IPE cells have also been used as retinal progenital cells because they originate from the same cell lines that give rise to the neural retina and RPE cells. The transduction of the photoreceptor-related homeobox gene was reported to induce photoreceptor phenotypes in IPE cells. Furthermore, transplantations of IPE cells have been performed to treat central nervous system disorders. In this review, we summarize recent progress on IPE transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.preteyeres.2007.01.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!