Background: Bacteriophage infections of bacterial cultures cause serious problems in genetic engineering and biotechnology. They are dangerous not only because of direct effects on the currently infected cultures, i.e. their devastation, but also due to a high probability of spreading the phage progeny throughout a whole laboratory or plant, which causes a real danger for further cultivations. Therefore, a simple method for quick inhibition of phage development after detection of bacterial culture infection should be very useful.

Results: Here, we demonstrate that depletion of a carbon source from the culture medium, which provokes starvation of bacterial cells, results in rapid inhibition of lytic development of three Escherichia coli phages, lambda, P1 and T4. Since the effect was similar for three different phages, it seems that it may be a general phenomenon. Moreover, similar effects were observed in flask cultures and in chemostats.

Conclusion: Bacteriophage lytic development can be inhibited efficiently by carbon source limitation in bacterial cultures. Thus, if bacteriophage contamination is detected, starvation procedures may be recommended to alleviate deleterious effects of phage infection on the culture. We believe that this strategy, in combination with the use of automated and sensitive bacteriophage biosensors, may be employed in the fermentation laboratory practice to control phage outbreaks in bioprocesses more effectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820593PMC
http://dx.doi.org/10.1186/1472-6750-7-13DOI Listing

Publication Analysis

Top Keywords

lytic development
12
inhibition lytic
8
escherichia coli
8
bacterial cultures
8
carbon source
8
effective inhibition
4
development
4
development bacteriophages
4
bacteriophages lambda
4
lambda starvation
4

Similar Publications

is a key foodborne pathogen in seafood that poses health risks to consumers. The application of phages and organic acids is considered an alternative strategy for controlling bacterial contamination in foods. In the present study, the genome features of five previously isolated virulent phages (VPpYZU64, VPpYZU68, VPpYZU81, VPpYZU92, and VPpYZU110) were characterized, and their bacteriostatic effects in combination with citric acid were analyzed.

View Article and Find Full Text PDF

Insights into the catalytic mechanism of archaeal peptidoglycan endoisopeptidases from methanogenic phages.

Int J Biol Macromol

January 2025

Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:

Archaeal peptidoglycan, a crucial component of the cell walls of Methanobacteria and Methanopyri, enhances the tightness of methanogenic cells and their resistance to known lytic enzymes and antibiotics. Although archaeal peptidoglycan endoisopeptidases (Pei) can reportedly degrade archaeal peptidoglycan, their biochemistry is still largely unknown. In this study, we investigated the activity and catalytic properties of the endoisopeptidases PeiW and PeiP using synthesized isopeptides identical to natural substrates.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).

View Article and Find Full Text PDF

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!