Research has demonstrated that the isolated spinal cord is capable of modifying its behavior in response to changes in environmental stimuli. Previous studies have shown that rats with complete thoracic spinal transections can learn to maintain a flexion response when shock delivery is paired with leg position. The current experiments examined whether neurokinin (NK) 1 and 2 receptors are involved in the acquisition and retention of this prolonged flexion response. Results demonstrated that L-703,606 (NK1 antagonist) facilitated response acquisition, whereas MEN-10,376 (NK2 antagonist) hindered acquisition. Furthermore, pretraining administration of either antagonist undermined subjects' ability to reacquire the prolonged flexion response during testing. These results demonstrate the importance of NK receptors in spinally mediated behavioral plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1037/0735-7044.121.1.186DOI Listing

Publication Analysis

Top Keywords

flexion response
12
prolonged flexion
8
response
5
intrathecal administration
4
administration neurokinin
4
neurokinin neurokinin
4
neurokinin receptor
4
receptor antagonists
4
antagonists undermines
4
undermines savings
4

Similar Publications

Background: Sleep disturbances are common and distressing among patients with atopic dermatitis (AD), often resulting in a cycle of worsening skin conditions. Among various factors affecting sleep in AD, cervical spine movement has been suggested to influence sleep quality; however, these studies mostly relied on subjective measures. Owing to the lack of objective and quantitative analyses of cervical spine movement, its association with sleep disturbances remains poorly understood.

View Article and Find Full Text PDF

Background: Continued advancements in cartilage surgery and an accumulating body of evidence warrants a contemporary synthesis of return to sport (RTS) outcomes to provide updated prognostic data and to better understand treatment response.

Purpose: To perform an updated systematic review of RTS in athletes after knee cartilage restoration surgery.

Study Design: Systematic review; Level of evidence, 4.

View Article and Find Full Text PDF

Purpose: Sleep deprivation and elevated blood pressure (BP) increase the risk of cardiovascular diseases. However, the effects of sleep deprivation on BP response, especially at exercise onset remain unclear. We aimed to elucidate the effects of experimental sleep deprivation (ESD) on resting and exercise BPs, including that at exercise onset, and investigate whether a night-time nap during ESD changes the ESD-altered BP.

View Article and Find Full Text PDF

Background: Adolescent idiopathic scoliosis (AIS) is characterized by an asymmetrical formation of the spine and ribcage. Recent work provides evidence of asymmetrical (right versus left side) paraspinal muscle size, composition, and activation amplitude in adolescents with AIS. Each of these factors influences muscle force generation.

View Article and Find Full Text PDF

Meniscal forces and knee kinematics are affected by tibial slope modifying high tibial osteotomy.

Knee Surg Sports Traumatol Arthrosc

January 2025

Orthopaedic Robotics Laboratory, Departments of Bioengineering and Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Purpose: To quantify the effect of increasing the posterior tibial slope (PTS) on knee kinematics and the resultant medial and lateral meniscal forces.

Methods: In this controlled laboratory study, a 6 degrees of freedom (DOF) robotic testing system was used to apply external loading conditions to seven fresh-frozen human cadaveric knees: (1) 200-N axial compressive load, (2) 5-N m internal tibial +10-N m valgus torque and (3) 5-N m external tibial + 10-N m varus torque. Knee kinematics and the resultant medial and lateral meniscal forces were acquired for two PTS states: (1) native PTS and (2) increased PTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!