Despite the classical hormonal effect, estrogen possesses a neuroprotective effect in the brain, which has led many to search for novel treatments for neurodegenerative diseases. Flavonoids, a group of compounds mainly derived from vegetables, share a resemblance, chemically, to estrogen, and indeed, some have been used as estrogen substitutes. To search for potential therapeutic agents against neurodegenerative diseases, different subclasses of flavonoids were analyzed and compared with estrogen. First, the estrogenic activities of these flavonoids were determined by activating the estrogen-responsive elements in cultured MCF-7 breast cancer cells. Second, the neuroprotective effects of flavonoids were revealed by measuring its inhibition effects on the formation of reactive oxygen species, the aggregation of beta-amyloid, and the induction of cell death by beta-amyloid in cultured neuronal PC12 cells. Among these flavonoids, baicalein, scutellarin, hibifolin, and quercetin-3'-glucoside possessed the strongest effect in neuroprotection; however, the neuroprotective activity did not directly correlate with the estrogenic activity of the flavonoids. Identification of these flavonoids could be very useful in finding potential drugs, or food supplements, for treating Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf063299zDOI Listing

Publication Analysis

Top Keywords

flavonoids
9
neuroprotective effects
8
pc12 cells
8
cell death
8
neurodegenerative diseases
8
flavonoids possess
4
neuroprotective
4
possess neuroprotective
4
effects cultured
4
cultured pheochromocytoma
4

Similar Publications

The potential function of chalcone isomerase (CHI) gene on flavonoid accumulation in Amomum tsao-ko fruit by transcriptome and metabolome.

Int J Biol Macromol

January 2025

Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:

Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.

View Article and Find Full Text PDF

In this study, steam explosion (SE) was applied to produce Xuehua pear soup (XPS) at different steam explosion pressure. The results showed that 0.3-0.

View Article and Find Full Text PDF

Galactinol synthase 4 influences plant height by affecting phenylpropanoid metabolism and the balance of soluble carbohydrates in tomato.

Plant Physiol Biochem

January 2025

Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China. Electronic address:

Plant height is a key trait that significantly influences plant architecture, disease resistance, adaptability to mechanical cultivation, and overall economic yield. Galactinol synthase (GolS) is a crucial enzyme involved in the biosynthesis of raffinose family oligosaccharides (RFOs). It plays a significant role in carbohydrate transport and storage, combating abiotic and biotic stresses, and regulating plant growth and development.

View Article and Find Full Text PDF

This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).

View Article and Find Full Text PDF

Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review.

Drug Des Devel Ther

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Purpose: Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!