Synthesis of novel and uniquely shaped 3-azabicyclo[4.2.0]octan-4-one derivatives by sequential Ugi/[2+2] ene-enone photocycloadditions.

Org Lett

Scaffold Oriented Synthesis and Structural Chemistry, Abbott Laboratories, R4CP, AP10, Abbott Park, IL 60064-6099, USA.

Published: March 2007

[structure: see text]. We report a new methodology for the construction of novel and uniquely shaped 3-azabicyclo[4.2.0]octan-4-one derivatives by combining the Ugi multicomponent reaction with [2+2] enone-olefin photochemical transformations. The overall sequence is capable of creating up to five stereocenters; however, in most cases, only two diastereomers are observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol070164lDOI Listing

Publication Analysis

Top Keywords

novel uniquely
8
uniquely shaped
8
shaped 3-azabicyclo[420]octan-4-one
8
3-azabicyclo[420]octan-4-one derivatives
8
synthesis novel
4
derivatives sequential
4
sequential ugi/[2+2]
4
ugi/[2+2] ene-enone
4
ene-enone photocycloadditions
4
photocycloadditions [structure
4

Similar Publications

In recent years, the increasing prevalence of viral infections such as dengue (DENV) and chikungunya (CHIKV) has emphasized the vital need for new diagnostic techniques that are not only quick and inexpensive but also suitable for point-of-care and home usage. Existing diagnostic procedures, while useful, sometimes have limits in terms of speed, mobility, and price, particularly in resource-constrained environments and during epidemics. To address these issues, this study proposes a novel technique that combines 3D printing technology with electrochemical biosensors to provide a highly sensitive, user-friendly, and customizable diagnostic platform.

View Article and Find Full Text PDF

Most thoracic aortic aneurysms (TAAs) are asymptomatic and often diagnosed at the time of rupture. TAAs involving the proximal arch require adequate coverage with thoracic endovascular aortic repair, which is timely and challenging in emergent ruptures. In situ laser fenestration is a novel method of arch revascularization.

View Article and Find Full Text PDF

Hot shape transformation: the role of PSar dehydration in stomatocyte morphogenesis.

Beilstein J Org Chem

January 2025

Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.

Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.

View Article and Find Full Text PDF

FOXJ3, a novel tumor suppressor in neuroblastoma.

Mol Ther Oncol

March 2025

School of Interdisciplinary Informatics, University of Nebraska Omaha, 1110 South 67th Street, Omaha, NE 68182, USA.

Neuroblastoma (NB) poses a significant challenge in pediatric cancer care due to its aggressive nature and poor prognosis. While advances have been made in clinical treatments, therapy resistance remains a tough hurdle in NB treatment. While much research has focused on identifying oncogenes in NB, there has been less emphasis on understanding tumor suppressors.

View Article and Find Full Text PDF

Exploring gut microbiota as a novel therapeutic target in Crohn's disease: Insights and emerging strategies.

World J Gastroenterol

January 2025

College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China.

Extensive research has investigated the etiology of Crohn's disease (CD), encompassing genetic predisposition, lifestyle factors, and environmental triggers. Recently, the gut microbiome, recognized as the human body's second-largest gene pool, has garnered significant attention for its crucial role in the pathogenesis of CD. This paper investigates the mechanisms underlying CD, focusing on the role of 'creeping fat' in disease progression and exploring emerging therapeutic strategies, including fecal microbiota transplantation, enteral nutrition, and therapeutic diets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!