Structures and fragmentations of cobalt(II)-cysteine complexes in the gas phase.

J Mass Spectrom

Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Université d'Evry-Val d'Essonne, CNRS UMR 8587, Bât. Maupertuis, Bd. F. Mitterrand, 91025 Evry Cedex, France.

Published: April 2007

The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed. Collision-induced dissociation (CID) products of the [Co(Cys)2]2+, [Co(Cys)2 - H]+ and [Co(Cys) - H]+ complexes were studied as a function of the collision energy, and mechanisms for the dissociation reactions are proposed. These were supported by the results of deuterium labelling experiments and by density functional theory calculations. Since [Co(Cys) - H]+ was one of the main product ions obtained upon the CID of [Co(Cys)2]2+ and of [Co(Cys)2 - H]+ under low-energy conditions, the fragmentation pathways of [Co(Cys) - H]+ and the resulting product ion structures were studied in detail. The resulting product ion structures confirmed the high affinity of cobalt(II) for the sulfur atom of cysteine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.1183DOI Listing

Publication Analysis

Top Keywords

[cocys h]+
12
cobalt complexes
8
singly charged
8
h]+
8
h]+ 1-3
8
[cocys2]2+ [cocys2
8
[cocys2 h]+
8
product ion
8
ion structures
8
complexes
6

Similar Publications

Enzyme immobilized in BioMOFs: Facile synthesis and improved catalytic performance.

Int J Biol Macromol

February 2020

School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, China.

Biological metal-organic frameworks (BioMOFs), an emerging sub-class of MOFs, are prepared from metals and biological ligands (bioligands). Benefit from the low toxicity and good biocompatibility of bioligands, BioMOFs can be used in biomedicine and biocatalysis. In this work, a novel approach was developed for fabricating BioMOFs materials (Co-Cys BioMOFs) from cobalt salt and cystine, meanwhile nitrile hydratase (NHase) was in-situ encapsulated during the synthesis process.

View Article and Find Full Text PDF

Structures and fragmentations of cobalt(II)-cysteine complexes in the gas phase.

J Mass Spectrom

April 2007

Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Université d'Evry-Val d'Essonne, CNRS UMR 8587, Bât. Maupertuis, Bd. F. Mitterrand, 91025 Evry Cedex, France.

The electronebulization of a cobalt(II)/cysteine(Cys) mixture in water/methanol (50/50) produced mainly cobalt-cationized species. Three main groups of the Co-cationized species can be distinguished in the ESI-MS spectrum: (1) the cobalt complexes including the cysteine amino acid only (they can be singly charged, for example, [Co(Cys)n- H]+ with n = 1-3 or doubly charged such as [Co + (Cys)2]2+); (2) the cobalt complexes with methanol: [Co(CH3OH)n- H]+ with n = 1-3, [Co(CH3OH)4]2+; and (3) the complexes with the two different types of ligands: [Co(Cys)(CH3OH) - H]+. Only the singly charged complexes were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!