The sequential adsorption of two proteins of the same or of an unlike nature on a heterogeneous hydrophobic surface is investigated through atomistic molecular dynamics simulations. By modeling two real protein fragments having a different secondary structure (alpha-helices or beta-sheets) on a graphite surface, the pre-adsorbed polypeptides are shown to modify the hydropathy of this substrate. Therefore, the graphite surface modified by the first adsorbed protein becomes more similar to a hydrophilic one in terms of both the interaction energy and the size of the second protein after the possible surface spreading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-006-0694-5 | DOI Listing |
JACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFLangmuir
December 2024
College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China.
The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 1, C1428EHA, Buenos Aires, Argentina.
Arsenic is a well-known toxic substance, widely distributed, whereas vanadium is a pollutant of emerging interest. Both have been found to correlate positively in groundwaters, thus concern arises on the effect of these pollutants on crops, if such waters are used for irrigation. We conducted a study on the effect of aging with a typical crop soil mimicking soils initially irrigated with water containing As and V.
View Article and Find Full Text PDFLangmuir
December 2024
State Key Laboratory of Fluorinated Functional Membrane Materials, Dongyue Fluorosilicone Technology Group, Zibo 256400, China.
Three α-alkene lubricants, differentiated by chain length, were selected as model compounds to investigate the influence of chain length on tribological properties. The novelty of this study lies in setting chain length as the sole variable to explore its impact on surface and adsorption energy. Based on the above findings, the study provides a unique explanation of the intrinsic relationship between chain length and tribological performance.
View Article and Find Full Text PDFMolecules
November 2024
Institute of Environmental Engineering, Polish Academy of Sciences, 34 M Skłodowska-Curie St., 41-819 Zabrze, Poland.
Silver nanoparticles are one of the most commonly used forms of silver (Ag) in nanotechnology applications due to their antibacterial properties and electrical and thermal resistance. The increasing production and use of products containing nanoparticles has led to their release into and contamination of soil and water. This review summarizes the literature on the fate, behavior (adsorption/desorption, precipitation/oxidative dissolution, transformation), and transport/mobility of Ag forms in soils (Ag ions and Ag nanoparticles-AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!