Multidrug resistance is a major obstacle to successful cancer treatment. One mechanism by which cells can become resistant to chemotherapy is the expression of ABC transporters that use the energy of ATP hydrolysis to transport a wide variety of substrates across the cell membrane. There are three human ABC transporters primarily associated with the multidrug resistance phenomenon, namely Pgp, MRP1, and ABCG2. All three have broad and, to a certain extent, overlapping substrate specificities, transporting the major drugs currently used in cancer chemotherapy. ABCG2 is the most recently described of the three major multidrug-resistance pumps, and its substrates include mitoxantrone, topotecan, irinotecan, flavopiridol, and methotrexate. Despite several studies reporting ABCG2 expression in normal and malignant tissues, no trials have thus far addressed the role of ABCG2 in clinical drug resistance. This gives us an opportunity to critically review the disappointing results of past clinical trials targeting Pgp and to propose strategies for ABCG2. We need to know in which tumor types ABCG2 contributes to the resistance phenotype. We also need to develop standardized assays to detect ABCG2 expression in vivo and to carefully select the chemotherapeutic agents and clinical trial designs. This review focuses on our current knowledge about normal tissue distribution, tumor expression profiles, and substrates and inhibitors of ABCG2, together with lessons learned from clinical trials with Pgp inhibitors. Implications of SNPs in the ABCG2 gene affecting the pharmacokinetics of substrate drugs, including many non-chemotherapy agents and ABCG2 expression in the SP population of stem cells are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10555-007-9042-6 | DOI Listing |
J Mater Chem B
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Departamento de Biología Molecular y Genómica y Departamento de Disciplinas Filosófico Metodológicas e Instrumentales. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.
View Article and Find Full Text PDFBMC Cancer
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
Background: ABCB1 overexpression is a key factor in causing multidrug resistance (MDR). As a result, it is crucial to discover effective medications against ABCB1 to overcome MDR. Falnidamol, a tyrosine kinase inhibitor (TKI) targeting the epidermal growth factor receptor (EGFR), is currently in phase 1 clinical trials for the treatment of solid tumors.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland.
Melanoma cells remain resistant to chemotherapy with cisplatin (CisPt) and doxorubicin (DOX). The abnormal expression of Receptor-Interacting Protein Kinase 4 (RIPK4) in certain melanomas contributes to tumour growth through the NFκB and Wnt/β-catenin signalling pathways, which are known to regulate chemoresistance and recurrence. Despite this, the role of RIPK4 in response to chemotherapeutics in melanoma has not been reported.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!